
 www.xmlsummerschool.com

 summer school

Licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

13th September 2018

XQuery and XML Databases

Adam Retter

 adam@evolvedbinary.com
 @adamretter

http://static.adamretter.org.uk/xmlss-18.pdf

 summer school

 www.xmlsummerschool.com Slide 2
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Who are you?

• Programmer / Consultant
– XQuery / XSLT
– Scala / Java / C++
– Concurrency
– Long time tinkerer and XML geek

● Core contributor to eXist-db XML Database (13 yrs.)

● Contributor to Facebook's RocksDB (3 yrs.)

● Creator of “Granite” polyglot database

● W3C XQuery WG Invited expert

● https://www.adamretter.org.uk

http://www.xmlsummerschool.com/
https://www.adamretter.org.uk/

 www.xmlsummerschool.com Slide 3

Licensed under a Creative Commons by-nc-sa 3.0 License

 summer school

Today’s Plan

Part 1 (60 minutes)
● Quick Introduction to XQuery
● Lab 1: Our First XQuery
● XDM: XQuery and XPath Data Model
● Lab 2: XQuery and XDM

Break (30 minutes)

Part 2 (60 minutes)
● Introduction to XML Databases
● Choosing an XML Database
● Lab 3: Storing and Querying XML
● XRX / Building XML Web Applications
● Lab 4: Our First XQuery for the Web
● Lab 5: Client/Server Interraction with XQuery
● Lab 6: Full Text Queries with XQuery

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Quick Introduction to
XQuery

 summer school

 www.xmlsummerschool.com Slide 5
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XQuery is...

• XML Query Language
– A W3C Standard
– Superset of XPath
– Closely related to XSLT 2.0
– Is NOT written in XML

• A Query Language!
– Pull information from one or more XML documents
– The “SQL of XML”

• A Transformation Language???
– Transform data (XML, HTML, JSON, Text, etc.) from one

form or structure to another

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 6
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Where does XQuery fit?

• Its kinda just XPath++
– If you know XPath...

• Much in common with XSLT
– XDM and XPath

• XDM / XPath 2.0
– XQuery 1.0 / XSLT 2.0

• XDM 3.0 / XPath 3.0
– XQuery 3.0 / XSLT 3.0

• XDM 3.1 / XPath 3.1
– XQuery 3.1 / …?

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 7
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XQuery is also...

• Not Just for Reporting
– Can update XML documents
– Can create new XML documents
– Extensions offer many things – Image Resizing, HTTP,

etc.

• An Application Programming Language?
– Turing Complete
– Functional Programming (esp. 3.0)
– XML Data Model Type System (data + code)
– Suited to the Web

• Easy to learn!

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 8
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Why use XQuery?

• Why not just use XSLT?

• XSLT is best suited to Transformation
– Typically: Document XSLT Document→ →

• XQuery is best suited to query/search
– Designed to work well over many documents
– XSLT does not have Update extensions
– XSLT does not have Full Text extensions

• More like a (simple) programming language

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Lab 1: Our First XQuery

 summer school

 www.xmlsummerschool.com Slide 10
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Our First XQuery

• We will use eXist-db
– You have been provided with server access details!

• Open the eXide XQuery IDE in your Web Browser
– Copy and Paste the Following XQuery:

– Run the query by pressing the “Eval” button
– What is the result?

<dates>
 <today>{current-date()}</today>
 <nice>{fn:format-date(current-date(),
 "[FNn], [D1o] [MNn] [Y]")}</nice>
</dates>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 11
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Your First XQuery

• Challenges for you to implement in XQuery:

1) What was the date one week ago?

2) What was the date one month ago?

3) What day was the 4th February 1981?

4) How many days between my talk at last years Summer
School and this years Summer School?

Hint: xs:dayTimeDuration() and friends!

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 12
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 1 Solution for Challenges

1) What was the date one week ago?

current-date() - xs:dayTimeDuration("P7D")

2) What was the date one month ago?

current-date() - xs:yearMonthDuration("P1M")

3) What day was the 4th February 1981?

fn:format-date(xs:date("1981-02-04"), "[FNn]")

4) How many days between my talk at last years Summer School
and this years Summer School?

xs:date("2018-09-13") - xs:date("2017-09-21")

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 13
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Where is the XML?

• So far we have just run the simplest XQuery!

• Yet, we have already encountered:
– Function Calls
– Type Constructors
– Arithmetic
– (Direct) Element Constructors

• We have not yet given the XQuery Processor any
XML to process!
– i.e.: The Context Sequence was empty.

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

XDM: XQuery and XPath
Data Model

 summer school

 www.xmlsummerschool.com Slide 15
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Model of an XQuery Processor

XQuery
QueryXML

XQuery
Evaluator

• An XQuery operates on a Context Sequence (XDM)
– e.g. Document(s) from either:

• Sources bound to the Processor
• Pulled in during the query (e.g. fn:doc(), fn:collection(), etc.)

XML
Output

XML
Parser

DOM / XDM

(context)

XDM XML
Serializer

XQuery Processor

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 16
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

What is XDM?

• XDM (XQuery and XPath Data Model)
• The XDM represents your XML (or...)
• XDM is what XPath and XQuery process!

XDM

• Understanding the basics of XDM is key!

XDM
XQuery

Expression

Input Output

next expression

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 17
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM Basics

• An XDM consists of Items, and Sequences of Items
– Builds upon XML Infoset and XML Schema

• There are 3 types of Items:
– Node types, Atomic types, and Functions types.

• Nodes
– XML Documents are made of these!
– Different types of nodes:

• document, element, attribute, text, comment, processing-element

– Each has a Unique Identity!
<root>
 <hello>world</hello>
 <hello>world</hello>
 ...

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 18
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM - Node Trees

<events>
 <conference ref="xmlams11">
 <name>XML Amsterdam</name>
 <date>2011-10-26</date>
 </conference>
 <conference ref="xmlprg12">
 <name>XML Prague</name>
 <date>2012-02-10</date>
 </conference>
</events>

<<document>>

events

name

date

conference

“XML Prague”

name

date

conference

“XML Amsterdam”

“2011-10-26”

ref=”xmlams11”

ref=”xmlprg12”

“2012-02-10”

XML is a tree of Nodes!

We address nodes in the tree
using path expressions, i.e.
XPath.

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 19
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM - Node Trees

<events>
 <conference ref="xmlams11">
 <name>XML Amsterdam</name>
 <date>2011-10-26</date>
 </conference>
 <conference ref="xmlprg12">
 <name>XML Prague</name>
 <date>2012-02-10</date>
 </conference>
</events>

<<document>>

events

name

date

conference

“XML Prague”

name

date

conference

“XML Amsterdam”

“2011-10-26”

ref=”xmlams11”

ref=”xmlprg12”

“2012-02-10”

Q: What is the XPath for the date
 of the second conference?

Q: What are the possible
 XPath(s) for the names of all
 conferences?

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 20
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Path Expressions

• Composed of Steps on Axes!

• Four most common: Child, Descendant, Parent,
and Attribute

• Child Axis is the simplest:

– is just shorthand for:

– Also expressible as:

/some/thing

/child::element(some)/child::element(thing)

/child::some/child::thing

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 21
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Path Expressions

• Descendant Axis is used for drilling down

•
– is just shorthand for:

• Much more convenient is:

– Not quite the same as descendant! It is shorthand
for:

/descendant::element(thing)

//thing

/descendant::thing

/descendant-or-self::node()/child::thing

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 22
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Path Expressions

• Parent Axis is also simple

•
– is just shorthand for:

• You can also test/select for the parent by name:

– Which is (of course) shorthand for:

/parent::element()

/parent::thing

/..

/parent::element(adam)

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 23
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Path Expressions

• Attribute Axis can only be applied to elements

•
– is just shorthand for:

You could alternatively use the node kind test:

• Attributes are not children! So this will not work:

/attribute::my-attribute

/child::attribute(my-attribute)

/@my-attribute

/attribute(my-attribute)

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 24
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM – Node Trees Types

<<document>>

events

name

date

conference

“XML Prague”

name

date

conference

“XML Amsterdam”

“2011-10-26”

ref=”xmlams11”

ref=”xmlprg12”

“2012-02-10”

document-node()

element()

element()

element

element()

text()

element()

element()

element()

text()

text()

attribute()

attribute()

text()

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 25
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM – Atomic Types

• Atomic Values
– i.e. A literal value, e.g. “hello”

– These are NOT Nodes!

– Many different Atomic types:
• See: XML Schema Part 2: Datatypes

– xs:string e.g.: “I am a String”
– xs:int e.g.: 1234
– xs:date e.g.: xs:date(“2004-03-01”)
– etc.

• Useful Links:
– https://www.w3.org/TR/xpath-datamodel-31/#types-hierarchy
– http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

http://www.xmlsummerschool.com/
https://www.w3.org/TR/xpath-datamodel-31/#types-hierarchy
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

 summer school

 www.xmlsummerschool.com Slide 26
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM (2nd Ed.) – Type Hierarchy

Modified from:
W3C XQuery 1.0 and XPath 2.0
Data Model (XDM) (Second Edition)
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/

Nodes

Atomic Values

Simple!
– Probably only use a

few of the Atomic
Value Types

http://www.xmlsummerschool.com/
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/

 summer school

 www.xmlsummerschool.com Slide 27
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

How to determine the type?

• You can use the XPath `instance of` expression to
test the type:

• You can write a node Kind Test as part of an
XPath Expression to select a node:

<hello>world</hello> instance of xs:string

<name><first>world</first></name>/element()/text()

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 28
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM - Sequences

• Sequence are returned by Path Expressions and
Functions

– Sequence Constructor starts with '(' and ends with ')'

– Consists of Zero or More Items (in order)

– Can be mix of Nodes and Atomic Values

– No Nested Sequences!
=> becomes =>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 29
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM - Sequences

• Sequences

– An Item == Sequence containing just that Item

– A Sequence with Zero Items, is an Empty Sequence
 is the Empty Sequence

– Can be the parameter to a function, a computed result,
or the result of an expression e.g.

“Find me all the names?”

– Returns the Sequence of two Elements:
//name

(<name>adam</name>, <name>bob</name>)

=> is identical to =>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 30
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Comparison Operators

• XQuery has two types of Comparison Operators
– Value Comparisons for Atomic Values
– General Comparisons for Sequences

Atomic Values Sequences

Equal to eq =

Not equal to ne !=

Greater than gt >

Greater than or equal to ge >=

Less than lt <

Less than or equal to le <=

• You should use appropriately to enforce intent and
avoid bugs...

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Lab 2: XQuery and XDM

 summer school

 www.xmlsummerschool.com Slide 32
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XML for the Context Sequence

• NOTE: For simple queries, we can embed the XML
we want to query!

• Context Item as an Element:

• But… You likely wanted a Document!
– Wrap using a Computed Document Constructor

document {<person><name>Adam</name></person>}
 /person/name

<person><name>Adam</name></person>
 /name

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 33
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XDM Nodes Challenge

• Using eXide, write XQuerys to answer the
following questions:

<document lang="en_GB">
 <fragment1>Hello there <gn>James</gn> <fn>Smith</fn>, </fragment1>
 <fragment2>how are you today?</fragment2>
</document>

1) What kind of node is 'fragment2'?

2) What are the names of the attributes?

3) How many text nodes are in the document?

4) How many nodes are in the document?

5) What is the name of the `fn` element’s parent?

Hint: Explore some
 standard XPath
 functions

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 34
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 2 Solution for XDM Nodes Challenge

1) What kind of node is 'fragment2'?

//fragment2 instance of element()

//element(fragment2)/exists(.)

2) What are the names of the attributes?

//attribute()/local-name(.)

//attribute::*/local-name(.)

3) How many text nodes are in the document?
count(document { ... }//text())?

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 35
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 2 Solution for XDM Nodes Challenge

4) How many nodes are in the document?

count(document { ... }//node())?

5) What is the name of the `fn` element’s parent?

//fn/local-name(..)

//fn/../local-name(.)

//element()[fn]/local-name(.)

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 36
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

With Just Embedded XML

• We have now encountered:
– XDM Nodes
– Axes
– Node Name Tests, and Node Kind Tests

• Wildcard Tests for Names

– Functions: fn:count, fn:local-name, fn:exists
– Sequences (e.g. input to fn:count!)
– A basic Predicate!
– (Direct) Element Constructors

• We have still not yet given the XQuery Processor
any external XML to process!

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 37
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

• Do the following evaluate to true or false?

Comparison Operators – Quiz!

("james", "simon", "mark", "bob") = "mark"

("james", "simon", "mark", "bob") = ("mark", "cliff")

("james", "simon", "mark", "bob") = ("mark", "james")

("james", "simon", "mark", "bob") eq "mark"

("james", "simon", "mark", "bob") != ("mark", "james")

("james", "simon", "mark", "bob") != ("hannah", "laura")

"mark" eq ()

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 38
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

• Do the following evaluate to true or false?

Lab 2 Comparison Operators – Quiz!
Solutions

("james", "simon", "mark", "bob") = "mark"

("james", "simon", "mark", "bob") = ("mark", "cliff")

("james", "simon", "mark", "bob") = ("mark", "james")

("james", "simon", "mark", "bob") eq "mark"

("james", "simon", "mark", "bob") != ("mark", "james")

("james", "simon", "mark", "bob") != ("hannah", "laura")

"mark" eq ()

: true()

XPTY0004

: ()

: true()

: true()

: true()

: true()

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 39
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

• So, what is going on with != ?

Comparison Operators !=

“The result of the comparison is true if and only if there is a pair of
atomic values, one in the first operand sequence and the other in the
second operand sequence, that have the required magnitude
relationship.”

- https://www.w3.org/TR/xpath-31/#id-general-comparisons

("a", "b", "a", "b") != ("a", "b")

• So first, "a" != "a" : false()

• But then, "a" != "b" : true()

: true()

("a", "a", "a") != ("a", "a") : false()

• For, most cases, you probably want fn:not instead of !=

http://www.xmlsummerschool.com/
https://www.w3.org/TR/xpath-31/#id-general-comparisons

 summer school

 www.xmlsummerschool.com Slide 40
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 2 Subset Challenge

• Using eXide, write an XQuery to determine if
sequence B is a subset of sequence A:

Hint: You could use an
XPath Quantified
Expression

let $seq-a := ("abigail", "lesley", "faye", "jess")
let $seq-b := ("lesley", "nicola")
return
 (: your code goes here :)

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 41
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 2 Subset Challenge – Solution

every $b in $seq-b satisfies $seq-a[. eq $b]

• Also valid:
–

–

not(
 (
 for $b in $seq-b
 return $seq-a = $b
) = false()
)

not(($seq-b ! ($seq-a = .)) = false())

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 42
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Through Exploring Comparisons

• We have now encountered:
– General vs. Value Comparisons
– The unintuitive but consistent != operator
– Functions: fn:not and fn:false
– Quantified Expressions e.g. some/every satisifes
– For expression (precursor to FLWOR)
– Simple map operator

• Next we get into the Database and XML...

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Introduction to XML
Databases

 summer school

 www.xmlsummerschool.com Slide 44
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Why XML Databases?

Why might you need an XML
Database?

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 45
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Why use an XML Database?

• Why a database, why not use a File System?
– How to retrieve?

● By file-path or some sort of lookup table?
● i.e. Is a 'Directory' the same as a 'Collection'?

– Where to keep metadata?

– How to Query?
● grep?
● Integrate a search-engine (full-text), e.g. Solr / Elastic?
● No direct XPath access!

– How to Update?

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 46
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Why XML Databases?

What is an XML Database?

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 47
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

What is an XML Database?

“An XML database is a data persistence software system that
allows data to be specified, and sometimes stored, in XML
format.

These data can then be queried, transformed, exported and
returned to a calling system. XML databases are a flavor of
document-oriented databases which are in turn a category of
NoSQL database (meaning Not (only) SQL).”

 -- https://en.wikipedia.org/wiki/XML_database

http://www.xmlsummerschool.com/
https://en.wikipedia.org/wiki/XML_database

 summer school

 www.xmlsummerschool.com Slide 48
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

What is an XML Database?

• More than just a filesystem!
– Look at how eXist-db stores XML, e.g. dbx files

• Unit of storage is the “Document”

• It ingests (and may return) XML documents or Nodes

• Node aware, e.g. search within and across documents

• CRUD operations on document(s)/node(s)

• Some form of query facility/language, e.g. XPath and/or XQuery

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 49
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

What is an XML Database?

• Full-Text capabilities

• Indexes defined for Document queries

• Often defines “Collection”s

• May also support non-XML content
– e.g. Key/Value, Tabular, JSON, Binary, Graph etc.

• Single or Multi-user: Embedded Library or Client/Server

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 50
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Types of XML Database

• XML Enabled Database
– Existing database product which added support for XML
– Predominant Data Model and purpose is NOT XML
– Heterogenous data models

• Useful with small amounts of XML as part of a larger non-
XML dataset.

• Native XML Database (NXDB)
– Designed for XML storage/retrieval/query from the start
– Primary concern and data model is hierarchical (tree)
– Highly optimised for XML storage and query

• Typically used when the majority (or all) of the data is XML

• Polyglot Persistence - i.e. 'Use the Right Tool for the Job'

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 51
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XML Enabled/Hybrid Database

- RDBMS approaches:
• XML Stored in CLOB
• XML Shredding into tables. e.g. Oracle XML Schema Table.
• ISO XML Type for columns

– Good for small amounts of standalone XML

– Bad for complex queries across XML and Tables

– Commercial: Oracle RDBMS, IBM DB2, SQL Server
– Open Source: PostgreSQL

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 52
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

DB2 Example – XMLType and SQL

id issn short_name vol journal

1 0012-1606 Dev. Biol. 369 <journal>
 <name>Developmental Biology</name>
 <publisher>Elsevier</publisher>
</journal>

2 8756-8233 Drugs Soc. 11 <journal>
 <name>Drugs and Society</name>
 <publisher>Taylor & Francis</publisher>
</journal>

select id, vol, xmlquery('$j/name', passing journal as "j") as name
from journals
where
 xmlexists('$j[publisher="Elsevier"]', passing journal as "j")

id vol name

1 369 <name>Developmental Biology</name>

http://www.xmlsummerschool.com/

 www.xmlsummerschool.com Slide 53

Licensed under a Creative Commons by-nc-sa 3.0 License

 summer school

● Reasons not to use an RDBMS

– XML is NOT “just text”! (varchar / BLOB / CLOB)

– Shredding
● Every set of children is a table. Many many tables!

● Manual vs. Auto.

● How to Query/Transform/Retrieve doc?

● Many RDBMS offer XML storage (e.g. XMLType)

– Oracle shred's behind the scenes, requires XML Schema.

– Querying is often still driven from SQL

– Joining XML and non-XML data is hard

● How to Update? Full-text Search? Aggregate?

Native XML Databases

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Choosing an XML Database

 summer school

 www.xmlsummerschool.com Slide 55
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

What to look for?

• Open Source vs. Commercial. Total Cost?

• Features
– XQuery / XSLT / XForms / XProc / JavaScript / JSONiq
– Indexes, Full Text Search facilities, and Update facilities
– REST / XML-RPC / WebDAV / SOAP / Language Integration

• Performance
– Test, Test, Test! Highly dependent on your data and

queries
• Scalability

• Support
– Self / Community / Paid / 3rd Party / Combination

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 56
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Popular Native XML Databases

• BaseX
– Open Source. BSD License. Commercial support available
– XQuery 3.1*, XSLT 1.0/3.0, XQuery Update 1.0, RESTXQ, EXPath, XQuery

Full-Text 1.0
– Java API

• eXist-db (Used in this lecture and labs)
– Open Source. LGPL v2.1. Commercial support available
– XQuery 3.1*, XSLT 3.0, XQuery Update, RESTXQ, EXPath, Bespoke Full-Text,

XProc, XForms 1.1, Customisable Extension Modules.
– Java, Python, Scala APIs
– Master-Slave Replication with Slave promotion.

• MarkLogic
– Proprietary. Commercial
– XQuery 1.0/3.0*, XSLT 2.0, Bespoke Update, Bespoke Full-Text, XForms 1.1
– Shared-Nothing Clustering

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Lab 3: Storing and
Querying XML

 summer school

 www.xmlsummerschool.com Slide 58
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Storing your first XML Document into
eXist-db

• First we will store a single document into eXist-db
using eXide
– Download this file to your computer:

http://static.adamretter.org.uk/hindawi-example.xml

– From the File Menu in eXide, enter the DB Manager:

http://www.xmlsummerschool.com/
http://static.adamretter.org.uk/hindawi-example.xml

 summer school

 www.xmlsummerschool.com Slide 59
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Storing your first XML Document into
eXist-db

1) Click the Upload Cloud icon
2) Click the “Upload Files” button
3) Choose the hindawi-example.xml file from your Computer
4) Click Close

(1)

(2)

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 60
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Storing your first XML Document into
eXist-db

1) Refresh the Directory side-panel in eXide

2) Click the /db/hindawi-example.xml document to open it from
the database

3) Spend a couple of minutes examining the XML and
understanding the Document representation.

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 61
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 3 First FLWOR

• Using eXide, write an XQuery for the Journal
Article
– Query /db/hindawi-example.xml
– Produce an XML report of the authors names,

similar to:

Hint: XQuery components you could use include:
 - For Binding
 - Predicate or Where Clause
 - fn:concat function

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 62
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 3 First FLWOR – Solution 1

<authors>
{
for $contrib in //contrib-group/contrib
where $contrib/@contrib-type eq "author"
return
 <author>{concat($contrib/name/given-names, " ", $contrib/name/surname)}</author>
}
</authors>

<authors>
 <author>Bo Zhang</author>
 <author>Wenxu Xie</author>
 <author>Yong Xiang</author>
</authors>

Produces the report:

XQuery:

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 63
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 3 First FLWOR – Solution 1 details

<authors>
{
for $contrib in //contrib-group/contrib
where $contrib/@contrib-type eq "author"
return
 <author>{concat($contrib/name/given-names, " ", $contrib/name/surname)}</author>
}
</authors>

1) For Binding: for each contrib child element present in the //contrib-group
element(s), bind each in turn to the variable $contrib

2) Where Clause: but only where each contrib element (referenced by $contrib)
has a contrib-type attribute with the value equal to "author"

3) Return Clause: for each thing we have bound, evaluate the next expression

4) Concat Function: concatenates one or more strings together into a single string

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 64
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 3 First FLWOR –
Improved, Solution 2

<authors>
{
for $name in
 doc("/db/hindawi-example.xml")//contrib-group/contrib[@contrib-type eq "author"]/name
return
 <author>{$name/given-names || " " || $name/surname}</author>
}
</authors>

1) Doc function: retrieves a document using the URI ("/db/hindawi-example.xml")
specified, and typically returns it’s document-node()

2) Predicate: Only where the context item (contrib element) has a contrib-type
attribute with the value equal to "author"

3) String Concatenation Expression: syntactic sugar for fn:concat(a, b)

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 65
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 3 Full FLWOR

• Using eXide, write an XQuery for the Journal
Article
– Query /db/hindawi-example.xml
– Produce an XML report of the references to articles ordered by

year (most recent first) and title:

Hint: XQuery components you could use include:
 - Let Binding
 - Order By Clause
 - Text Node Kind Test
 - xs:int type constructor

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 66
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 3 Full FLWOR - Solution

<references>
{
for $cite in doc("/db/hindawi-example.xml")//ref[@content-type eq "article"]/nlm-citation
let $year := if($cite/year) then xs:int($cite/year) else 0
order by $year descending, $cite/article-title ascending
return
 <article year="{$year}" doi="{$cite/pub-id[@pub-id-type eq "doi"]}">
 {
 $cite/article-title/text()
 }
 </article>
}
</references>

XQuery:

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 67
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 3 FLWOR Join

• Using eXide, write an XQuery:
– Query /db/hindawi-example.xml
– From the articles authors, produce an XML report of the

references which were also likely authored by the same
people. Similar to:

<article year="2014" title="Key Observations of Retterpotomus Social Interactions">
 <authors>
 <author surname="Retter" given-names="Adam"/>
 </authors>
 <self-refs>
 <article year="2011" title="Upon the Discovery of The Retterpotomus">
 <author surname="Retter" given-names="A."/>
 </article>
 </self-refs>
</article>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 68
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 3 FLWOR Join - Solution

• XQuery:
let $article := doc("/db/hindawi-example.xml")/article
let $authors := $article//contrib-group/contrib[@contrib-type eq "author"]/name
return
 <article year="{$article//pub-date[@pub-type eq "publication-year"]/year}"
 title="{$article//article-meta//article-title}">
 { $authors ! <author surname="{surname}" given-names="{given-names}"/> }
 <self-refs>
 {
 for $cite in
 $article//ref[@content-type eq "article"]
 /nlm-citation[.//surname = $authors/surname]
 return
 <article year="{$cite/year}" title="{$cite/article-title/text()}">
 { $cite/person-group[@person-group-type eq "author"]/name !
 <author surname="{surname}" given-names="{given-names}"/> }
 </article>
 }
 </self-refs>
 </article>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 69
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

FLWOR’ing the Database

• We have now encountered:
– Explicitly providing the Context Sequence with the

function fn:doc
– FLWOR components:

• For Bindings – more powerful than XPath’s simple For expr.
• Let Bindings – to bind variables to values
• Where Clause – constraints. Also compared to Predicates
• Order By Clause - multiple key, ascending/descending
• Return Clause – Operating on tuples!

– If/then/else expressions – like any other returns a
sequence.

– String Concatenation. Function vs. expression.
– Joining queries on sequences

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

XRX / Building XML Web
Applications

 summer school

 www.xmlsummerschool.com Slide 71
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

What is XRX?

• Originally, XRX = XForms REST XQuery→ →

• A zero-translation architecture, e.g. Orbeon with
eXist-db. i.e., XML end-to-end

• Now more popular:
– XML as the storage
– XQuery and XSLT as the backend processing
– Maybe some XML Templating Framework
– Delivering XML/HTML/JSON over REST
– JavaScript on the client. Web-browser / API client.

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 72
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

XQuery Processing Model
(Web Platform)

XQuery
Query

XQuery
Processor

Query
Output

XML
Database

Create Document(s)

XML Updates

Stored Queries

Web Server

Submitted
Queries

Response

XML Input

XSLT

Web
Browser

API /
Mobile App

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 73
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Working for the Web from XQuery

• Output – XSLT and XQuery Serialization 3.1
– XML / XHTML / HTML 5 / Text / JSON

• More Context!
– Accessing the HTTP Request
– Controlling the HTTP Response

• RESTXQ (EXQuery) – eXist-db, BaseX, and MarkLogic?
• Vendor extensions

– XQuery Functions - e.g. eXist-db’s Request,
Response and Session Modules.

– URI Routing. e.g. eXist-db’s XQuery URL Rewriting

declare namespace output = "https://www.w3.org/2010/xslt-xquery-serialization";
declare option output:method "xhtml";

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 74
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

eXist-db’s Request Module

• Provides a set of XQuery Functions
– Read data from Java’s HttpServletRequest
– Allows us to read all parts of the HTTP Request

• See: http://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-
db.org/xquery/request

request:get-parameter-names()
 ! <param name="{.}" value="{request:get-parameter(., ())}"/>

request:get-parameter("abbrev", ())

http://localhost:8080/exist/rest/db/myquery.xq?abbrev=xmlss&year=2018

Given the URI:

Get the value of the “abbrev” parameter:

Get the name and value of all parameters:

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Lab 4: Our First XQuery for
the Web

 summer school

 www.xmlsummerschool.com Slide 76
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Storing your first XML Collection into
eXist-db

• We need more data to work with. We will store a
collection of XML files.
– Download this file to your computer:

http://static.adamretter.org.uk/hindawi-small.zip
– From the File Menu in eXide, enter the DB Manager:

http://www.xmlsummerschool.com/
http://static.adamretter.org.uk/hindawi-small.zip

 summer school

 www.xmlsummerschool.com Slide 77
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Storing your first XML Collection into
eXist-db

1) Click the Upload Cloud icon
2) Click the “Upload Files” button
3) Choose the hindawi-small.zip file from your Computer
4) Click Close

(1)

(2)

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 78
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Expanding the Zip File into a Collection

1) Copy and Paste the following XQuery into eXide
2) Click the “Eval” button to run the XQuery.
3) What did the XQuery do?

let $collection-uri := xmldb:create-collection("/db", "hindawi-data")
let $zip := util:binary-doc("/db/hindawi-small.zip")
return
 compression:unzip($zip, compression:no-filter#3, (), function($path, $dt, $px) {
 $collection-uri || "/" || $path
 }, ())

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 79
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

NOTE: Documents and Collections

• doc() and collection() functions take a URI
– fn:doc returns zero or one document!
– fn:collection return zero or many documents

• URI may or may not be de-referenced

• Both functions return document node(s).

• What is a Collection?
– Implementation defined

• A folder? Hierarchical?
• URI! A label?

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 80
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

NOTE: Collections in eXist-db

• All Documents are stored in Collections
– Documents belong to only one Collection!

• Root collection is /db

• Collections can contain sub-collections

• The collection hierarchy is inherited!
/db

journals

books

blogs

marketing

Quiz

How do I get all of the marketing collection?
What does collection("/db/journals") return?
What does collection("/db/books/blogs")
return?

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 81
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 4 Subsequence Query

• Using eXide, write an XQuery:
– Query the collection: /db/hindawi-data
– Produce an XML Report listing the first 10 articles. Include

title, authors and year. Order by year descending e.g.:

<articles>
 <article year="2014" title="Understanding the Colour of Jake the Dog">
 <authors>
 <author surname="The Human" given-names="Finn"/>
 </authors>
 </article>
 <article year="2014" title="Methods for the Hypnotisation of Princesses">
 <authors>
 <author surname="Ice King" given-names="The"/>
 </authors>
 </article>
</articles>

Hint: fn:subsequence used on fn:collection

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 82
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 4 Subsequence Query - Solution

<articles>
{
let $articles := subsequence(collection("/db/hindawi-data"), 1, 10)/article
for $article in $articles
let $authors := $article//contrib-group/contrib[@contrib-type eq "author"]/name
let $year := $article//pub-date[@pub-type eq "publication-year"]/year
order by $year cast as xs:int descending
return
 <article year="{$year}"
 title="{$article//article-meta//article-title}">
 { $authors ! <author surname="{surname}" given-names="{given-names}"/> }
 </article>
}
</articles>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 83
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Storing your XQuery into eXist-db

1) Click the “Save” button
2) Navigate into the “apps” collection
3) Click the “Create Collection” button, enter “hindawi”, click Ok.
4) Navigate into the new “hindawi” sub-collection
5) Enter the name “list.xq”, click “Save”

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 84
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Executing your Query from the Web

• Your XQuery is now stored as a resource in eXist-
db at the URI: /db/apps/hindaw/list.xq

• We will use eXist-db’s REST Server to execute the
query. The REST Server URI’s start /exist/rest
followed by the URI to the resource in the
database.

• In your web-browser, visit the URL:
– http://xmlssN.evolvedbinary.com:8080/exist/rest/

db/apps/hindawi/list.xq

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 85
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 4 HTML’ize your Query

• Using eXide, modify your XQuery “list.xq”:
– To output valid HTML instead of XML
– HINT: You will need output:method and output:media-type

from the XSLT and XQuery Serialization 3.1 spec.
– Test in the Web Browser!

<table>
 <tr><th>Year</th><th>Title</th><th>Authors</th></tr>
 <tr>
 <td>2014</td>
 <td>Understanding the Colour of Jake the Dog</td>
 <td>

 Finn The Human

 </td>
 </tr>
</table>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 86
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 4 HTML’ize your Query - Solution
declare namespace output="http://www.w3.org/2010/xslt-xquery-serialization";
declare option output:method "html5";
declare option output:media-type "text/html";

<html>
 <h1>Journal Articles</h1>
 <table border="1">
 <tr><th>Year</th><th>Title</th><th>Authors</th></tr>
 {
 let $articles := subsequence(
 for $article in collection("/db/hindawi-data")/article
 order by $article//pub-date[@pub-type eq "publication-year"]/year cast as xs:int descending
 return $article
 , 1, 10)
 return
 for $article in $articles
 let $authors := $article//contrib-group/contrib[@contrib-type eq "author"]/name
 return
 <tr>
 <td>{$article//pub-date[@pub-type eq "publication-year"]/year/text()}</td>
 <td>{$article//article-meta//article-title/text()}</td>
 <td>

 { $authors ! {string-join((surname, given-names), " ")} }

 </td>
 </tr>
 }
 </table>
</html>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 87
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Our First XQuery for the Web

• We have now encountered:
– XML Collections

• How eXist-db implements them
• Creating Collections – xmldb:create-collection
• Storing XML into Collections – xmldb:store
• Providing the Context Sequence from fn:collection

– Binary Documents – util:binary-doc
– Uncompressing Zip files - compression:unzip
– Function References and Inline Functions
– Executing a Server-side XQuery from the Web Browser
– Generating a dynamic HTML page from Xquery

• Serialization of XML to HTML – output:method “html”

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Lab 5: Client/Server
Interaction with XQuery

 summer school

 www.xmlsummerschool.com Slide 89
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 5 Processing a Form

• Using eXide, modify your `list.xq` query:
– Add a HTML form at the top of the page
– The form should have a single “year” field
– When the form is submitted it should call your `list.xq` query

again, and only return the first 10 results for that year.
• Example HTML Form:

<form action="list.xq" method="post">
 <label for="year">Year:</label>
 <input name="year" id="year"/>
 <input type="submit"/>
</form>

Hint:
 - eXist-db’s request:get-parameter function that we saw
previously can be used to get the value of the form field
- A predicate or where clause can be used to restrict the
results to a particular year

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 90
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 5 Processing a Form - Solution

• The start of our `list.xq` query now looks like:
<html>
 <h1>Journal Articles</h1>
 <form action="list.xq" method="post">
 <label for="year">Year:</label>
 <input name="year" id="year" value="{request:get-parameter("year",())}"/>
 <input type="submit"/>
 </form>
 <hr/>
 <table border="1">
...

for $article in collection("/db/hindawi-data")/article
let $year := $article//pub-date[@pub-type eq "publication-year"]/year
where $year eq request:get-parameter("year", ())
order by $year cast as xs:int descending
return $article

• Our initial FLWOR becomes:

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 91
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Client/Server Interaction with XQuery

• We have now encountered:

– The Client (the web-browser)
• Sends the HTML Form request over HTTP to eXist-db

– The Server (eXist-db)
• eXist-db routes the HTTP request to the XQuery
• The XQuery is executed
• Our XQuery performs some actions and generates HTML

– The request:get-parameter function gets the form data
• eXist-db sends the HTML response back to the client

http://www.xmlsummerschool.com/

 www.xmlsummerschool.comLicensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License

 summer school

Lab 6: Full Text Queries
with XQuery

 summer school

 www.xmlsummerschool.com Slide 93
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Full Text Queries

• We can use XPath to query the structure of a
document.

• We can use Full Text queries to query the content of
the document.

• Combining structural and content queries together is
incredibly powerful!

• XQuery and XPath Full Text 3.0
– W3C Spec.
– Some implement, some don’t!

• BaseX does, eXist-db has something else...

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 94
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Full Text Queries in eXist-db

• Define indexes for your Collection(s)
– This is done in XML
– Stored in a file named `collection.xconf` in the

system Collection.
– If your collection is: /db/abc, then your

collection.xconf must be located at:
/db/system/config/db/abc/collection.xconf

• Reindex your Collection
• Write full-text queries using the ft:query function(s)

• Other index types are available: NGram, Range, QName, Sort,
Algolia, and Geospatial.

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 95
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 6 Full Text Indexing

• Using eXide, store the following XML file to:
/db/system/config/db/hindawi-data/collection.xconf:
– eXide should ask you if you want to apply the Configuration,

choose yes.
• If not – ask me!

<collection xmlns="http://exist-db.org/collection-config/1.0">
 <index>
 <lucene>
 <analyzer class="org.apache.lucene.analysis.standard.StandardAnalyzer"/>
 <text qname="article-title" boost="2.0"/>
 <text qname="p">
 <inline qname="sup"/>
 <inline qname="sub"/>
 </text>
 </lucene>
 </index>
</collection>

http://www.xmlsummerschool.com/

 summer school

 www.xmlsummerschool.com Slide 96
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 6 Full Text Indexing

• Using eXide, modify your `list.xq` query:
– Add an additional field to your HTML form called “keywords”
– Your list.xq query should when it detects the keywords field

restrict the results to the first 10 which match the keyword in
the article abstract.

Hint:
 - You will need to use eXist-db’s ft:query function inside
a predicate on the abstract of the article
- eXist-db’s Full Text documentation is here:
http://www.exist-db.org/exist/apps/doc/lucene

http://www.xmlsummerschool.com/
http://www.exist-db.org/exist/apps/doc/lucene

 summer school

 www.xmlsummerschool.com Slide 97
Licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License

Lab 6 Full Text Indexing - Solution

• The end of our HTML form of our `list.xq`query:
...
 <label for="keywords">Keywords:</label>
 <input name="keywords" id="keywords" value="{request:get-
parameter("keywords", ())}"/>
 <input type="submit"/>
</form>

for $article in
 if(request:get-parameter("keywords", ())) then
 collection("/db/hindawi-data")/article[.//abstract[ft:query(p, request:get-
parameter("keywords", ()))]]
 else
 collection("/db/hindawi-data")/article
let $year :=
...

• Our initial FLWOR becomes:

http://www.xmlsummerschool.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

