
Task Abstraction forTask Abstraction for
XPDLsXPDLs

Debbie Lockett <debbie@saxonica.com>
Adam Retter <adam@evolvedbinary.com>

XML Prague 2019XML Prague 2019

IntroductionIntroduction
Be careful what you wish for...

In this talk...In this talk...

Background to problem / What we set out to solve!
Side effects and concurrency
Introduction to EXPath Task module - define functions
and how to use them
Code examples and demos using Tasks
Conclusions and future work

A problemA problem

Conclusion: We need a better way to compute tasks

ixsl:schedule-action is inflexible and exhibits side effects
<xsl:template name="send-request">
 <xsl:variable name="request" select="
 map{
 'method': 'POST',
 'href': 'http://localhost:19757/mywebapp/receiveXML',
 'body': $body,
 'media-type': 'application/xml'
 } "/>

 <ixsl:schedule-action http-request="$request">
 <xsl:call-template name="handle-response"/>
 </ixsl:schedule-action>

</xsl:template>

<xsl:template name="handle-response">
 <xsl:context-item as="map(*)" use="required"/>
 <xsl:for-each select="?body">
 <xsl:call-template name="process-response-body"/>
 </xsl:for-each>
</xsl:template>

A side effect is whereA side effect is where
external state is mutatedexternal state is mutated

e.g. writing to a file or accessing a web page

Concurrency is where moreConcurrency is where more
than one thing appears tothan one thing appears to

happen happen simultaneouslysimultaneously
e.g. printing a document while running some queries

Tea breakTea break
or time for some baking...

Baking a cakeBaking a cake

Suppose we have a recipe for baking a cake...

Obviously some steps need to be carried out
in the order specified.
Bake the cake before icing it.

Baking a cakeBaking a cake

Meanwhile it may be OK to do some steps
concurrently.
Weigh the flour at the same time as cracking the eggs
into a bowl.

Care must be taken when reordering to avoid
problems from side effects.
If you get the cake decorations out too early, there's a
risk they won't be there when you get to the
decorating stage...

Baking a cakeBaking a cake

The recipe will not say exactly how long to
bake for (only something like "put in the oven
for 20 minutes, or until cooked"). While the
cake is in the oven, rather than just waiting,
the baker is able to get on with other
steps. The task is asynchronous.

Put the cake in the oven - only take it out and proceed
with the subsequent instructions, when it's done.

Meanwhile start preparing the icing, or have a cup of
tea.

Task-based cake recipeTask-based cake recipe

Replace standard recipe of sequential steps:

Wrap each instruction as a task
Explicitly describe how these are composed
Explicitly allow concurrent or asynchronous
processing

The recipe becomes something more like a flow
diagram...

The baker now has explicit information about
opportunities for reordering and/or concurrency.

EXPath TasksEXPath Tasks
It's not all about cakes

General problemGeneral problem

 Safely manage side effects in XPDLs

 Recall: by definition side effects are NOT
 allowed in pure functional languages!

Permit parallel or concurrent operation

XPDL Existing SolutionsXPDL Existing Solutions

Side effects
Frameworks: XQuery Update - PUL,
xq-promise
Processors: MarkLogic, BaseX, eXist-db,
Saxon-EE/CE

Concurrency
Frameworks: xq-promise
Processors: MarkLogic, BaseX, eXist-db,
Saxon-EE/JS

Non-XPDL SolutionsNon-XPDL Solutions

Actors
Async/Wait
Co-routines
Haskell IO Monad
Promises and Futures
Reactive Streams

TasksTasks
Aim: provide a way to safely manage side
effects and concurrent execution in XPDLs.

Functions are provided to:

create and compose tasks
create and use asynchronous tasks
manage errors
execute a task (chain)

A task is an object which encapsulates an
action (which may have side effects); which
could be lifted to be asynchronous.

How Tasks workHow Tasks work
A Task is a state transformation function

Performs your action upon a special
RealWorld object.

Is a pure-function and is " safe"!

When a task chain is actually executed, the
RealWorld is passed through the chain;
which enforces the correct execution
order.

For convenience we represent a Task as
XDM map (encapsulating an action):
map(xs:string, function(*))

How Tasks workHow Tasks work
For any $task, the action is stored in the
"apply" entry of the map:

$task?apply is a function of type:

This function always returns a pair:

When tasks are composed, the 2nd task always
takes the RealWorld from the result of the 1st
task; and uses its $action-result as needed.

function(element(adt:realworld)) as item()+

(element(adt:realworld), $action-result)

Creating TasksCreating Tasks
task:value($v) - the task's action is to return a value

task:of($f) - the task's action is to execute the
function and return its result

task:error($code, $description, $error-object) - the
task's action is to raise an error

task:value("hello world")

task:of(function() {'hello world'})

task:error(
 xs:QName("local:oops"),
 "something went wrong", ())

task:of(util:system-time#0)

Composing TasksComposing Tasks

task:bind($task, $binder) - provide a binder function
which creates a new task from an existing task's value

task:then($task, $next) - compose two tasks,
discarding first task's value

task:fmap($task, $mapper) - provide a mapper
function which creates a new value from an existing
task's value

task:sequence($tasks) - create a new task from the
sequential application of one or more tasks

Different functions are available for composing tasks
 (the result of each function is a task):

Executing TasksExecuting Tasks

task:RUN-UNSAFE($task) - executes a task chain, and
returns the result.

Function for executing a task (chain):

WARNING: This function is inherently unsafe, as it
causes any side effects within the task chain to be
actualised. It should only be invoked once in any
application; at the end.

Asynchronous tasksAsynchronous tasks

task:async($task) - constructs an asynchronous task
from an existing task

Function to construct an asynchronous task:

When an asynchronous task is executed, it returns an
Async - a function which represents the asynchronous
process, not the result of that process.

An Async is an "abstract type":

...~A is the type of the result of the asynchronous
process

function(element(adt:scheduler)) as ~A

Functions upon AsyncFunctions upon Async

task:wait($async) - extracts the value of an Async
and returns a task of the value; possibly by blocking

task:wait-all($asyncs)

task:cancel($async) - attempt to cancel the
asynchronous process

task:cancel-all($asyncs)

Function based syntax Imperative-like syntax
 task:bind($task, $binder) $task ? bind($binder)

task:then($task, $next) $task ? then($next)

 task:fmap($task, $mapper) $task ? fmap($mapper)

task:sequence($tasks) $task1 ? sequence(tail($tasks))

task:async($task) $task ? async()

task:RUN-UNSAFE($task) $task ? RUN-UNSAFE()

Alternative Map SyntaxAlternative Map Syntax
Using maps for tasks means we can provide alternative

imperative-like fluent syntax for these functions:

Examples & DemosExamples & Demos
Let's see some code!

Demos using EXPath TaskDemos using EXPath Task
implementation in XQueryimplementation in XQuery

or XSLTor XSLT

Cake bakingCake baking

task:of(function() { local:make-cake#0})
 ? fmap(local:bake#1)
 ? fmap(local:decorate-cake#1)
 ? async()
 ? bind(task:wait#1)
 ? RUN-UNSAFE()

Starting to write a cake recipe using Tasks

Asynchronous HTTP in IXSLAsynchronous HTTP in IXSL

<xsl:template match="button[@id eq 'go']" mode="ixsl:onclick">
 <xsl:variable name="onclick-page-updates-task"
 select="task:of(f:onclick-page-updates#0)"/>
 <xsl:variable name="http-post-task"
 select="task:of(function(){
 http:post($request-body, $request-options)
 })"/>
 <xsl:variable name="async-http-task"
 select="$http-post-task
 ? fmap(f:handle-http-response#1)
 ? async()"/>
 <xsl:sequence
 select="task:RUN-UNSAFE(
 task:then($onclick-page-updates-task, $async-http-task)
)"/>
</xsl:template>

ConclusionsConclusions
Was it all worth it?

Benefits of EXPath TasksBenefits of EXPath Tasks
The EXPath Task module meets our initial requirements:

Allows developers to safely encapsulate side-effecting
functions in XPDLs so that at evaluation time they
appear as pure functions, and enforce the expected
order of execution
Allows concurrent programming to be explicitly
described; implementable on systems offering
preemptive or cooperative multitasking

Using TasksUsing Tasks
How well can use of the Task module be incorporated
into IXSL stylesheets for Saxon-JS applications?

Still at an early stage of evaluation

Likely to require significant application restructure,
but benefits should make this worthwhile

May require new IXSL extensions to be able to code
certain mechanisms nicely (e.g. providing an abort
button for an asynchronous HTTP request)

Future WorkFuture Work
Develop implementations further (get asynchronous
actions working!)

Community feedback

Task Module additions

EXPath Spec 1.0?

Implementations Implementations

XQuery

XSLT

Java (for XQuery in eXist-db)

JavaScript (for XSLT in Saxon-JS)

https://github/adamretter/task.xq

https://github/saxonica/expath-task-xslt

https://github.com/eXist-db/exist/tree/expath-task-
module-4.x.x/ex- tensions/expath/src/org/expath/task

https://github/adamretter/task.xq
https://github/saxonica/expath-task-xslt
https://github.com/eXist-db/exist/tree/expath-task-module-4.x.x/ex-%20tensions/expath/src/org/expath/task

Thanks for listeningThanks for listening
Any questions?

