
Locking and CacheLocking and Cache
ImprovementsImprovements

for eXist-dbfor eXist-db

Adam RetterAdam Retter
adam@evolvedbinary.comadam@evolvedbinary.com

@adamretter@adamretter

eXist-db Community Meetup
XML Prague 08/02/2018

Adam RetterAdam Retter

eXist-db Core Dev (13 years!)

Consultant
Concurrency and Databases
Scala / Java / C++ / XQuery / XSLT

Open Source Hacker
NoSQL: eXist-db / RocksDB
CSV Validator / UTF-8 Validator / Shadoop
Many other smaller contributions...

W3C Invited Expert for XQuery WG

Author of the "eXist" book for O'Reilly

We will talk about...We will talk about...
1. The last year of work at Evolved Binary

PR #1719 -

2. Concurrency in eXist-db
Multi-user Transactions
Sharded Caches
Memory barriers - i.e. Locks

3. Problems identified with Locking in eXist-db

4. Improvements/Solutions

http://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/

http://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/

https://github.com/evolvedbinary/exist/tree/locking-and-cache-improvements_report/

http://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/
http://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/
https://github.com/evolvedbinary/exist/tree/locking-and-cache-improvements_report/

How did this project start?How did this project start?
Corruptions in eXist-db became unbearable

Evolved Binary start developing Granite (~2015)
R&D project to build a better Database for structured
information
Started with eXist-db, and replacing its BTree storage

Transaction Isolation differences
eXist-db likely offers Repeatable Reads isolation level
Granite should offer at least Snapshot Isolation

eXist-db's Collection Cache not Transaction/Isolation safe
Goal: We need a better Collection Cache
Problem: Replacing the Collection Cache opened up many
concurrency problems

Collection Cache ProblemsCollection Cache Problems
Many operations are synchronized(collectionCache)

Performance effectively single-threaded for Collection ops
Introduced to avoid previous deadlocks and corruptions

Shared mutable state between transactions
Lack of transaction isolation

Fine for Repeatable Read in eXist-db (if you know)

Granite wants better Isolation support

Current approach restricts possible concurrency
improvements

Unless you sacrifice consistency

Collection Cache for GraniteCollection Cache for Granite
Requirement: Transaction aware and Isolation safe

Two Levels
1. Transaction Local

Mutable

per-Transaction

Read-through to Global

Write version to Global on Commit

2. Global
Immutable

Versioned and GC'd

Remove synchronized(collectionCache) paths
for performance

Collection Cache for GraniteCollection Cache for Granite

un-synchronized un-synchronized
 Collection Cache Collection Cache

Revealed several deadlock scenarios

Revealed further data corruption opportunities

Showed inconsistent design and use of
Collection/Document locks

Locking issue categoriesLocking issue categories
1. Inconsistent use of Locks

2. Inconsistent Lock Interleaving

3. Use of Incorrect Lock Modes - Read vs. Write

4. Lock Leaks

5. Accidental Lock Release

6. Insufficient Locking

7. Overzealous Locking

8. Correctness of Lock Implementations

9. Lack of Concurrency

Collection LocksCollection Locks
One per in-memory Java Collection Object

should only be zero-or-one Java Object in-memory per
database Collection
Guards both mutable Java Object state and collections.dbx
entry

Implementation:
org.exist.storage.lock.ReentrantReadWriteLock

Not actually Read/Write, really a Mutex!
" modified" EDU.oswego.cs.dl.util.concurrent.ReentrantLock
Exact Provenance is unclear
Correctness is unproven

Document LocksDocument Locks
One per in-memory Java Document Object

should only be zero-or-one Java Document in-memory per
database Collection's Document
Guards both mutable Java Object state, and collections.dbx
and dom.dbx entry

Implementation:
org.exist.storage.lock.MultiReadReentrantLock

Similar to Java SE's ReentrantReadWriteLock?
Writer Biased
Allows Lock upgrading, i.e.: READ_LOCK -> WRITE_LOCK
Adapted from Apache Turbine JCS project
Exact Provenance is unclear
Correctness is unproven

Solution. 1 - Lock Manager and Lock TableSolution. 1 - Lock Manager and Lock Table

Before solutions, we must understand the problems!
Centralises all locking operations
Reports all locking events to the Lock Table

Lock Identity
Now per-URI rather than per-Object

Impossible to have two in-memory Java Objects for the same
database object

Can acquire in advance of creating the database object

Lock Table
Registerable Event Listeners
JMX Output
Snapshots and Traces

Solution. 1 - Lock Table JMXSolution. 1 - Lock Table JMX

Solution. 1 - Lock Table SnapshotSolution. 1 - Lock Table Snapshot

Acquired Locks

/db/test
 COLLECTION
 READ_LOCK concurrencyTest-remove-12 (count=1),
 concurrencyTest-remove-23 (count=1),
 concurrencyTest-remove-21 (count=1),
 concurrencyTest-remove-1 (count=1),

/db
 COLLECTION
 INTENTION_WRITE concurrencyTest-remove-0 (count=1)

/db/test/test1.xml
 DOCUMENT
 WRITE_LOCK concurrencyTest-remove-0 (count=1)

Attempting Locks

/db/test
 COLLECTION
 WRITE_LOCK concurrencyTest-remove-0

Solution. 1 - Lock Table TraceSolution. 1 - Lock Table Trace

2018-02-07 18:16:42,877 TRACE - Acquired COLLECTION#1133260707637130
 (WRITE_LOCK) of /db/system/security/exist by ma
2018-02-07 18:16:42,891 TRACE - Attempt COLLECTION#1133260707637130
 (WRITE_LOCK) of /db/system/security/exist/group
2018-02-07 18:16:42,891 TRACE - Acquired COLLECTION#1133260707637130
 (WRITE_LOCK) of /db/system/security/exist/group
2018-02-07 18:16:42,891 TRACE - Attempt DOCUMENT#1133260707647983
 (WRITE_LOCK) of /db/system/security/exist/group
2018-02-07 18:16:42,891 TRACE - Acquired DOCUMENT#1133260707647983
 (WRITE_LOCK) of /db/system/security/exist/group
2018-02-07 18:16:42,891 TRACE - Attempt COLLECTION#1133260707653300
 (INTENTION_READ) of /db by main at 113326070765
2018-02-07 18:16:42,891 TRACE - Acquired COLLECTION#1133260707653300
 (INTENTION_READ) of /db by main at 113326070765
2018-02-07 18:16:42,891 TRACE - Attempt COLLECTION#1133260707653300
 (INTENTION_READ) of /db/system by main at 11332
2018-02-07 18:16:42,891 TRACE - Acquired COLLECTION#1133260707653300
 (INTENTION_READ) of /db/system by main at 11332

Simply set locks.log to "trace" in log4j2.xml

Solution. 2 - Standard Java LocksSolution. 2 - Standard Java Locks

Are eXist's lock implementations trustworthy?
We don't know the Provenance!
No known proofs of Correctness!
Likely, not used in other projects...

Replaced with Java SE's implementations
Fixed paths which performed lock upgrading
Collections/Documents: Java SE's ReentrantReadWriteLock

Collections now Reader/Writer (not Mutex)

Still mutex on Collection Cache and collections.dbx!

Some Java SE deadlock detection support, e.g. jconsole
Acquired with Lock#lockInterruptibly()

Solution. 2 - Standard Java LocksSolution. 2 - Standard Java Locks

Replaced with Java SE's implementations
.dbx files: Java SE's ReentrantLock

Complex Relationship between BTree and BTreeCache

Existing functions often request the (overall) wrong lock mode

eXist's ReentrantReadWriteLock was (really) a mutex, so previously not
a problem

Difficult to make Reader/Writer

Provenance and Correctness of Lock implementations is
now well known and widely used

Solution. 3 - Managed LocksSolution. 3 - Managed Locks

Reduces: Lock Leaks and Accidental Lock Releases

ARM constructs engage with syntax
e.g. try-with-resources
Lock(s) are always correctly released

We provide:
ManagedLock
ManagedCollectionLock
ManagedDocumentLock
LockedCollection
LockedDocument

Solution. 3 - Managed LocksSolution. 3 - Managed Locks

Collection collection = null;
try {
 collection = broker.openCollection("/db/x/y", LockMode.READ_LOCK);

 DocumentImpl resource = null;
 try {
 resource = collection.getDocumentWithLock(broker, "doc1.xml",
 LockMode.READ_LOCK);

 // now do something with the document

 } finally {
 if (resource != null) {
 resource.getUpdateLock().release(LockMode.READ_LOCK);
 }
 }
} finally {
 if (collection != null) {
 collection.release(LockMode.READ_LOCK)
 }
}

Example, before Managed Locks:

Solution. 3 - Managed LocksSolution. 3 - Managed Locks

try(final Collection collection = broker.openCollection("/db/x/y",
 LockMode.READ_LOCK);
 final LockedDocument resource = collection.getDocumentWithLock(broker,
 "doc1.xml", LockMode.READ_LOCK)
) {

 // now do something with the document
}

Example, with Managed Locks:

Solution. 4 - Lock OrderingSolution. 4 - Lock Ordering
Deadlock Avoidance: Iterate objects in stable global order

Modified Collection's sub-Collections iterator
Previously unstable order - backed by a HashSet
Now backed by a LinkedHashSet, provides insertion order

Modified Collection's Documents iterator
Previously unstable order, backed by a TreeMap... ordered
by Document ID!
Now backed by a LinkedHashMap, provides insertion order

Modified DefaultDocumentSet's iterator
Previously unstable order, backed by a Int2ObjectHashMap
Now backed by a LinkedHashSet, provides insertion order

Solution. 5 - Explicit Lock InterleavingSolution. 5 - Explicit Lock Interleaving
Deadlock Avoidance: Always mix Collection/Document
locks in same order

Mainly two patterns previously:
Symmetrical

i.e.: Lock Collection, Lock Document, Unlock Document, Unlock
Collection

Easiest to provide managed constructs for e.g. Managed Locks

Asymmetrical
i.e. Lock Collection, Lock Document, Unlock Collection, Unlock
Document

Most flexible

Offers best concurrency... can release Collection lock early!

Solution. 5 - Explicit Lock InterleavingSolution. 5 - Explicit Lock Interleaving

Explicitly settled on the Asymmetrical pattern
Refactored eXist-db to exclusively use Asymmetrical pattern
Commented code to remind developers of Asymmetrical
Pattern at each site of use
Documented the pattern

try(final Collection collection = broker.openCollection("/db/x/y",
 LockMode.READ_LOCK)) {

 // ...do something with *just* the Collection

 try(final LockedDocument resource = collection.getDocumentWithLock(
 broker, "doc1.xml", LockMode.READ_LOCK)) {

 // ...do something with the Collection and Document

 // NOTE: early release of Collection lock inline with Asymmetrical Lock
 collection.close();

 // ...finally do something with *just* the Document
 }
}

Solution. 6 - Ensure Locking AnnotationsSolution. 6 - Ensure Locking Annotations
Reduces: Incorrect Lock Modes, Lock Leaks, Accidental
Lock Releases and Insufficient Locking

Explicitly Documents (and enforces) locking contracts

We provide Java Annotations (for developers):
@EnsureLocked / @EnsureUnlocked

Lock mode must/not be held on a parameter or return object

@EnsureContainerLocked / @EnsureContainerUnlocked
Lock mode must/not be held on the object of a method call

Using Aspect Oriented Programming:
Can log violations to ensure-locking.log
Can throw an exception when a violation is detected
Designed to be used at test time (not production)

Solution. 6 - Ensure Locking AnnotationsSolution. 6 - Ensure Locking Annotations
Example lock contract violation(s) log:

FAILED: Constraint to require lock mode WRITE_LOCK on Collection: /db/test
 <- org.exist.storage.lock.EnsureLockingAspect.
 enforceEnsureLockedParameters(EnsureLockingAspect.java:161
 <- org.exist.storage.NativeBroker.removeCollection(NativeBroker.java:1665
 <- org.exist.dom.persistent.NodeTest.tearDown(NodeTest.java:239)
 <- sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
FAILED: Constraint to require lock mode READ_LOCK on Document: /db/test/test.xml
 <- org.exist.storage.lock.EnsureLockingAspect.
 enforceEnsureLockedContainer(EnsureLockingAspect.java:303)
 <- org.exist.dom.persistent.DocumentImpl.getDocId(DocumentImpl.java:197)
 <- org.exist.indexing.range.RangeIndexWorker.removeCollection(RangeIndexW
 <- org.exist.indexing.IndexController.removeCollection(IndexController.ja
FAILED: Constraint to require lock mode READ_LOCK on Document: /db/test/test.xml
 <- org.exist.storage.lock.EnsureLockingAspect.
 enforceEnsureLockedContainer(EnsureLockingAspect.java:303)
 <- org.exist.dom.persistent.DocumentImpl.getDocId(DocumentImpl.java:197)
 <- org.exist.storage.structural.NativeStructuralIndexWorker.
 getQNamesForDoc(NativeStructuralIndexWorker.java:540)
 <- org.exist.storage.structural.NativeStructuralIndexWorker.
 removeDocument(NativeStructuralIndexWorker.java:505)}

Solution. 7 - Collection Locking StrategySolution. 7 - Collection Locking Strategy
Attempt to find a Deadlock free Collection Locking
scheme

Many options investigated!
Collection hierarchy in eXist-db is a tree!
Adopted a Hierarchical Locking Scheme
Granularity of Locks in a Shared Data Base - Gray et al.
1975

Lock from the tree's root node to the most granular node of interest

Locking a node in the tree implies locking descendants

Multiple lock modes: IS, S, IX, SIX, and X

Uses weaker intention locks are used at higher levels

Not deadlock free under all conditions

Solution. 7 - Collection Locking StrategySolution. 7 - Collection Locking Strategy
Our modified implementation: Granularity of Locks in a
Shared Data Base

Mode 1: Multi-Writer / Multi-Reader
Better performance

Not deadlock free... unless user designs Collection hierarchy suitably

Mode 2: Single-Writer / Multi-Reader
Deadlock free

Restricts writes to any single Collection at once (likely happened
previously)

Long running writes can block reads (likely happened previously)

The Default

Does not consider Documents!
Deadlocks can still occur between Collection and Documents

Could easily be extended to incorporate Documents

Solution. 8 - Concurrent Collection CacheSolution. 8 - Concurrent Collection Cache

Previously: synchronized(collectionCache)
But... We have now addressed the locking issues!

Replaced eXist's Collection Cache:
Previously HashMap with LRU Policy
Adopted Caffeine from Ben Manes
Provides both size and age bounds
Now TinyFLU policy - more performant
ConcurrentHashMap like interface
Comprehensive Cahce Statistics available through JMX

Solution. 8 - Concurrent Collection CacheSolution. 8 - Concurrent Collection Cache
Example Collection Cache JMX:

ConclusionConclusion
Many Improvements to eXist-db

Standard Java Locks
Improved Deadlock Avoidance
Managed Locks offer safety through syntax
Documented Locking Patterns
Corrected various lock use problems in the code base
Tools: EnsureLocked Annotations, LockTable tracing

Deadlocks Happen!
eXist-db cannot yet abort a Transaction without risking
corruption

Provides a good foundation for future work...

