Locking and Cache
Improvements
for eXist-db

eXist-db Community Meetup
XML Prague 08/02/2018

Adam Retter

N adam@evolvedbinary.com

y ©@adamretter ‘7~’ ’

EVOLVED BINARY

Adam Retter

eXist-db Core Dev (13 years!)

Consultant
= Concurrency and Databases
= Scala/Java/ C++/ XQuery / XSLT

Open Source Hacker
= NoSQL: eXist-db / RocksDB
= CSV Validator / UTF-8 Validator / Shadoop
= Many other smaller contributions...

W3C Invited Expert for XQuery WG

Author of the "eXist" book for O'Reilly ‘7 W)

EVOLVED BINARY

We will talk about...

1. The last year of work at Evolved Binary

* http://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/

® http://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/

e PR #1719 - https://github.com/evolvedbinary/exist/tree/locking-and-cache-improvements_report/

2. Concurrency in eXist-db
e Multi-user Transactions
e Sharded Caches
e Memory barriers - i.e. Locks

3. Problems identified with Locking in eXist-db

4, Improvements/Solutions

My

EVOLVED BINARY

http://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/
http://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/
https://github.com/evolvedbinary/exist/tree/locking-and-cache-improvements_report/

How did this project start?

Corruptions in eXist-db became unbearable

Evolved Binary start developing Granite (~2015)

= R&D project to build a better Database for structured
information

= Started with eXist-db, and replacing its BTree storage

Transaction Isolation differences
= eXist-db likely offers Repeatable Reads isolation level
= @Granite should offer at least Snapshot Isolation

eXist-db's Collection Cache not Transaction/Isolation safe
= Goal: We need a better Collection Cache

= Problem: Replacing the Collection Cache opened up many
concurrency problems

Collection Cache Problems

Many operations are synchronized(collectionCache)
= Performance effectively single-threaded for Collection ops
= |ntroduced to avoid previous deadlocks and corruptions

Shared mutable state between transactions
= |Lack of transaction isolation
Fine for Repeatable Read in eXist-db (if you know)

Granite wants better Isolation support

= Current approach restricts possible concurrency

improvements ‘7“ b

Unless you sacrifice consistency
EVOLVED BINARY

Collection Cache for Granite

Requirement: Transaction aware and Isolation safe

Two Levels
1. Transaction Local
Mutable
per-Transaction
Read-through to Global
Write version to Global on Commit
2. Global
Immutable

Versioned and GC'd

Remove synchronized(collectionCache) paths \7 W b

for performance
EVOLVED BINARY

Collection Cache for Granite

MVCC COLLECTION CACHE

Adam Retter

May 8, 2017

TRANSACTION

LOCAL CACHE

FORWARDED READ (collection[1])

Collection[1]

RETURN(collection[1])

READ (collection[1])

TRANSACTION

START TRANSACTION

RETURN (transaction[1])

-

COPY/(collection[1] to collection[1_1])

— — — +- :Cache Miss — — — — — — —

Collection[1_1]

WRITE (collection[1 1])

WRITE ACK(collection[1_1])

COPY ACK(collection[1_1]

Collection[1_1]

.
|
READ (collection[1_1]) —
5 GET DOCUMENTS(collection[1_1])
e RETURN(collection[1_1])
o >
[§] RETURN DOCS(collection[1_1])
\
|
I WRITE(collection[1_1]) — COMMIT TRANSACTION
\
\
I
WRITE ACK (collection[1_1]
CK (collection(1 1]) } TRANSACTION CLOSED
\
\
\
\
I

My

EVOLVED BINARY

un-synchronized
Collection Cache

Revealed several deadlock scenarios
Revealed further data corruption opportunities

Showed inconsistent design and use of
Collection/Document locks

My

EVOLVED BINARY

Locking issue categories

1. Inconsistent use of Locks

2. Inconsistent Lock Interleaving

3. Use of Incorrect Lock Modes - Read vs. Write
4. Lock Leaks

5. Accidental Lock Release

6. Insufficient Locking

7. Overzealous Locking

8. Correctness of Lock Implementations ‘7 W ’

9. Lack of Concurrency EVOLVED BINARY

Collection Locks

One per in-memory Java Collection Object

= should only be zero-or-one Java Object in-memory per
database Collection

= Guards both mutable Java Object state and collections.dbx
entry

Implementation:
org.exist.storage.lock.ReentrantReadWriteLock

= Not actually Read/Write, really a Mutex!
= " modified" EDU.oswego.cs.dl.util.concurrent.ReentrantLock

My

EVOLVED BINARY

= Exact Provenance is unclear
= Correctness is unproven

Document Locks

One per in-memory Java Document Object

= should only be zero-or-one Java Document in-memory per
database Collection's Document

= Guards both mutable Java Object state, and collections.dbx
and dom.dbx entry

Implementation:
org.exist.storage.lock.MultiReadReentrantLock

= Similar to Java SE's ReentrantReadWriteLock?
= Writer Biased

= Allows Lock upgrading, i.e.: READ_LOCK -> WRITE_LOCK
= Adapted from Apache Turbine JCS project

= Exact Provenance is unclear \7W ’

= Correctness is unproven EVOLVED BINARY

Solution. 1 - Lock Manager and Lock Table

Before solutions, we must understand the problems!
= Centralises all locking operations
= Reports all locking events to the Lock Table

Lock Identity
= Now per-URI rather than per-Object

Impossible to have two in-memory Java Objects for the same
database object

Can acquire in advance of creating the database object

Lock Table
= Registerable Event Listeners

= JMX Output \7“ b

= Snapshots and Traces EVOLVED BINARY

Solution. 1 - Lock Table JMX

| BON | pid: 26159 org.apache.tools.ant.launch.Launcher test
Overview Memory Threads Classes VM Summary ==
> [0 JMImplementation ~Attribute value
» [} com.sun.management Name Value
> [java.lang < Tabular Data Navigation >
b [java.nio
b [java.util.logging
» B org.apache.logging.log4j2 << < Composite Data Navigation
¥ [org.exist.management T— S
» @ LockManager Acquired key concurrencyTest-remove-0
v @@ LockTable value 1
¥ Attributes
Attempting
¥ Operations
dumpToConsole
dumpTolog Refresh
> @@ Systeminfo
P [org.exist.management.exist ~MBeanAttributelnfo
> [0 org.exist. management.exist.tasks [dame Value
Attribute:
Name Acquired
Description Acquired
Readable true
Writable false
Is false
Type javax.management.openmbean.TabularData
~Descriptor
Name Value
Attribute:
openType javax.management.openmbean.TabularType(name=java.util. Map <java.lang.String, java.util.Map<or...
originalType java.util.Map <java.lang.String, java.util.Map <org.exist.storage.lock.Lock$LockType, java.util.Map <or...

(MY

EVOLVED BINARY

Solution. 1 - Lock Table Snapshot

Acquired Locks

/db/test
COLLECTION
READ LOCK concurrencyTest-remove-12 (count=1),
concurrencyTest-remove-23 (count=1),
concurrencyTest-remove-21 (count=1),
concurrencyTest-remove-1 (count=1l),

COLLECTION
INTENTION WRITE concurrencyTest-remove-0 (count=1)

/db/test/testl.xml
DOCUMENT
WRITE LOCK concurrencyTest-remove-0 (count=1)

Attempting Locks

/db/test
COLLECTION
WRITE LOCK concurrencyTest-remove-0

Solution. 1 - Lock Table Trace

2018-02-07

2018-02-07

2018-02-07

2018-02-07

2018-02-07

2018-02-07

2018-02-07

2018-02-07

2018-02-07

18:16:42,877
18:16:42,891
18:16:42,891
18:16:42,891
18:16:42,891
18:16:42,891
18:16:42,891
18:16:42,891

18:16:42,891

Acquired COLLECTION

(WRITE LOCK) of /db/system/security/exist by mg
Attempt COLLECTION

(WRITE LOCK) of /db/system/security/exist/groug
Acquired COLLECTION

(WRITE LOCK) of /db/system/security/exist/group
Attempt DOCUMENT

(WRITE LOCK) of /db/system/security/exist/groug
Acquired DOCUMENT

(WRITE LOCK) of /db/system/security/exist/groupg
Attempt COLLECTION

(INTENTION READ) of /db by main at 113326070765
Acquired COLLECTION

(INTENTION READ) of /db by main at 113326070765
Attempt COLLECTION

(INTENTION READ) of /db/system by main at 11332
Acquired COLLECTION

(INTENTION READ) of /db/system by main at 11332

79 N

EVOLVED BINARY

Solution. 2 - Standard Java Locks

Are eXist's lock implementations trustworthy?
= We don't know the Provenance!
= No known proofs of Correctness!
= Likely, not used in other projects...

Replaced with Java SE's implementations
= Fixed paths which performed lock upgrading
= Collections/Documents: Java SE's ReentrantReadWriteLock
Collections now Reader/Writer (not Mutex)
Still mutex on Collection Cache and collections.dbx!

= Some Java SE deadlock detection support, e.g. jconsole

= Acquired with Lock#lockInterruptibly() \7W ’

EVOLVED BINARY

Solution. 2 - Standard Java Locks

Replaced with Java SE's implementations
= . dbx files: Java SE's ReentrantLock
Complex Relationship between BTree and BTreeCache
Existing functions often request the (overall) wrong lock mode

eXist's ReentrantReadWriteLock was (really) a mutex, so previously not
a problem

Difficult to make Reader/Writer

Provenance and Correctness of Lock implementations is
now well known and widely used

My

EVOLVED BINARY

Solution. 3 - Managed Locks

Reduces: Lock Leaks and Accidental Lock Releases

ARM constructs engage with syntax
= e.g. try-with-resources
= Lock(s) are always correctly released

We provide:

= ManagedLock

= ManagedCollectionLock
= ManagedDocumentLock
= | ockedCollection

= LockedDocument
MY

EVOLVED BINARY

Solution. 3 - Managed Locks

Collection collection = null;

try {
collection = broker.openCollection("/db/x/y", LockMode.READ LOCK) ;

DocumentImpl resource = null;

try {
resource = collection.getDocumentWithLock (broker, "docl.xml",

LockMode.READ LOCK) ;

} finally {
if (resource != null) {
resource.getUpdatelLock().release(LockMode.READ ILOCK) ;

}

}
} finally {

if (collection != null) {
collection.release(LockMode.READ LOCK)

}

Solution. 3 - Managed Locks

try(final Collection collection = broker.openCollection("/db/x/v",
LockMode.READ LOCK) ;
final LockedDocument resource = collection.getDocumentWithLock (broker,
"docl.xml", LockMode.READ LOCK)

My

EVOLVED BINARY

Solution. 4 - Lock Ordering

Deadlock Avoidance: Iterate objects in stable global order

Modified Collection's sub-Collections iterator
= Previously unstable order - backed by a HashSet
= Now backed by a LinkedHashSet, provides insertion order

Modified Collection's Documents iterator

= Previously unstable order, backed by a TreeMap... ordered
by Document ID!

= Now backed by a LinkedHashMap, provides insertion order

Modified DefaultDocumentSet's iterator
= Previously unstable order, backed by a Int20bjectHashMap
= Now backed by a LinkedHashSet, provides insertion order

Solution. 5 - Explicit Lock Interleaving

Deadlock Avoidance: Always mix Collection/Document
locks in same order

Mainly two patterns previously:
= Symmetrical

i.e.: Lock Collection, Lock Document, Unlock Document, Unlock
Collection

Easiest to provide managed constructs for e.g. Managed Locks
= Asymmetrical

i.e. Lock Collection, Lock Document, Unlock Collection, Unlock
Document

Most flexible

Offers best concurrency... can release Collection lock early!

Solution. 5 - Explicit Lock Interleaving

= Refactored eXist-db to exclusively use Asymmetrical pattern

= Commented code to remind developers of Asymmetrical
Pattern at each site of use

= Documented the pattern

try(final Collection collection = broker.openCollection("/db/x/v",
LockMode.READ LOCK)) {

try(final LockedDocument resource = collection.getDocumentWithLock (
broker, "docl.xml", LockMode.READ LOCK)) {

collection.close();

Solution. 6 - Ensure Locking Annotations

Reduces: Incorrect Lock Modes, Lock Leaks, Accidental
Lock Releases and Insufficient Locking

Explicitly Documents (and enforces) locking contracts

We provide Java Annotations (for developers):
= @EnsurelLocked / @EnsureUnlocked
Lock mode must/not be held on a parameter or return object
= @EnsureContainerLocked / @EnsureContainerUnlocked

Lock mode must/not be held on the object of a method call

Using Aspect Oriented Programming:
= Can log violations to ensure-locking.log
= Can throw an exception when a violation is detected
= Designed to be used at test time (not production)

Solution. 6 - Ensure Locking Annotations

FAILED:

FAILED:

FAILED:

Constraint to require lock mode WRITE LOCK on Collection: /db/test

<- org.exist.storage.lock.EnsureLockingAspect.
enforceEnsurelLockedParameters (EnsureLockingAspect.java:161

<- org.exist.storage.NativeBroker.removeCollection(NativeBroker.java:166"

<- org.exist.dom.persistent.NodeTest.tearDown(NodeTest.java:239)

<- sun.reflect.NativeMethodAccessorImpl.invokeO (Native Method)

Constraint to require lock mode READ LOCK on Document: /db/test/test.xml

<- org.exist.storage.lock.EnsureLockingAspect.
enforceEnsurelLockedContainer (EnsureLockingAspect.java:303)

<- org.exist.dom.persistent.DocumentImpl.getDocId(DocumentImpl.java:197)

<- org.exist.indexing.range.RangeIndexWorker.removeCollection(RangeIndex}

<- org.exist.indexing.IndexController.removeCollection(IndexController. j:

Constraint to require lock mode READ LOCK on Document: /db/test/test.xml

<- org.exist.storage.lock.EnsureLockingAspect.
enforceEnsureLockedContainer (EnsureLockingAspect.java:303)

<- org.exist.dom.persistent.DocumentImpl.getDocId(DocumentImpl.java:197)

<- org.exist.storage.structural.NativeStructuralIndexWorker.
getQNamesForDoc (NativeStructuralIndexWorker. java:540)

<- org.exist.storage.structural.NativeStructuralIndexWorker.
removeDocument (NativeStructuralIndexWorker.java:505)}

Solution. 7 - Collection Locking Strategy

Attempt to find a Deadlock free Collection Locking
scheme

Many options investigated!
= Collection hierarchy in eXist-db is a tree!
= Adopted a Hierarchical Locking Scheme

= Granularity of Locks in a Shared Data Base - Gray et al.
1975

Lock from the tree's root node to the most granular node of interest
Locking a node in the tree implies locking descendants
Multiple lock modes: IS, S, IX, SIX, and X

Uses weaker intention locks are used at higher levels

Not deadlock free under all conditions ‘ W ’

EVOLVED BINARY

Solution. 7 - Collection Locking Strategy
Our modified implementation: Granularity of Locks in a
Shared Data Base

= Mode 1: Multi-Writer / Multi-Reader

Better performance

Not deadlock free... unless user designs Collection hierarchy suitably
= Mode 2: Single-Writer / Multi-Reader

Deadlock free

Restricts writes to any single Collection at once (likely happened
previously)

Long running writes can block reads (likely happened previously)
The Default

= Does not consider Documents!
Deadlocks can still occur between Collection and Documents

Could easily be extended to incorporate Documents

Solution. 8 - Concurrent Collection Cache

Previously: synchronized(collectionCache)
= But... We have now addressed the locking issues!

Replaced eXist's Collection Cache:
= Previously HashMap with LRU Policy
= Adopted Caffeine from Ben Manes
= Provides both size and age bounds
= Now TinyFLU policy - more performant
= ConcurrentHashMap like interface
= Comprehensive Cahce Statistics available through JMX

My

EVOLVED BINARY

Solution. 8 - Concurrent Collection Cache
Example Collection Cache JMX:

[1.B.0_121] org.exist.start.Main jetty (75375) 52 e |
& MBean Browser @ | BBl &=
MBean Tree] l:é:"‘ MBean Features

Filter:

b = JMImplementation
P (= com.sun.management

Notifications

Attributes | Operations

Metadata |

Name

~ Walue

| Wstatistics ___________________ Conmeosiiedata, clze 13 Default]

Update Interval

b (= java.lang [#averageLoadPenalty Default
(= java.nio [] #evictionCount G Default
P (= javawutil.concurrent [] #evictionWeight 1 Default
P (= java.util.logging [] #hitCount 467 Default
b (= org.apache.logging.log4j2 [] #hitRate P.7285491410656787 Default
P (= org.eclipse jetty.deploy B #loadCount 2] Default
P (= org.eclipse.jetty.deploy. providers [#loadFailureCount e Default
P (= org.eclipse.jetty.io [] #loadFailureRate 0.9 Default
(= org.eclipse.jetty.jaas [] #loadSuccessCount a Default
¥ (= org.eclipse jetty.jmx B #missCount 174 Default
P (= org.eclipse.jetty.security [] #missRate 9.2714508580343214 Default
P (= org.eclipse.jetty.security.authent B #requestCount 641 Default
b (= org.eclipse. jetty.server I #totalLoadTime a Default

P (= org.eclipse.jetty.server.handler
b (= org.eclipse.jetty.server.handler.g
b = org.eclipse.jetty. server.session
b (= org.eclipse.jetty.serviet
P (= org.eclipse.jetty.util.log
b (= org.eclipse.jetty.util.ssl
b = org.eclipse.jetty.util. thread
b (= org.eclipse.jetty.webapp
P = org.exist.jetty
b (= org.exist.management
¥ = org.exist. management.exist

P (= CacheManager.Cache

ify CacheManager

i CollectionCache

Conclusion

Many Improvements to eXist-db
= Standard Java Locks
= |mproved Deadlock Avoidance
= Managed Locks offer safety through syntax
= Documented Locking Patterns
= Corrected various lock use problems in the code base
= Tools: EnsureLocked Annotations, LockTable tracing

Deadlocks Happen!

= eXist-db cannot yet abort a Transaction without risking
corruption

Provides a good foundation for future work... \7 W b

EVOLVED BINARY

