
@adamretter	/	adam.retter@googlemail.com

Consultant

Software	Engineer

Data(base)	Geek

Last	2.5	Years	with	The	National	Archives	(UK)
Building	a	new	Digital	Archive	for	the	UK	->	DRI

CSV	Schema	Language

CSV	Validation	Tool

Archive	Records	of	UK	from	OGDs,	NGOs	and	Special	Interest

Excellent	at	traditional	Paper	records
One	of	the	largest	collections	in	the	world
Over	11	million	historical	Government	and	Public	Records

However,	most	records	today	are	not	created	on	paper!
Predicted	2013	-	2020:

>6PB	of	Digital	Records	to	Archive
50%	of	which	will	be	

2009:	Existing	Digital	Records	System	will	not	cope...
2011:	Build	new	Digital	Records	Infrastructure

1.	 Records	arrive	via:
Hard	Disks	(USB	etc)
DVD	/	CD	/	Digital	Video	Cassette	/	Tape	(mostly	LTO	1	to	6)
SFTP

2.	 Load	Records

3.	 Test,	Secure	and	Examine	Records	(Pre-Ingest)

4.	 Extract	Metadata	and	Archive	(Ingest)

5.	 Enable	Digital	Archivists	(Search,	Retrieval	and	Edit)

6.	 Export	Transcoded	Records	and	Metadata	(Publish	/	Sell)

1.	 What	constitutes	a	Record?

2.	 Given	a	disk	of	files	-	What	do	 	Accession?

3.	 How	does	DRI	know	what	it	should	process	and	how?

1.	 One	or	more	Files	 	Metadata	(Technical,	Provenance,
Transcription,	Closure)

2.	 Records	Selection	Process	by	OGD,	provided	as	metadata

3.	 Search	source	for	metadata	and	process	described	records

TNA	creates	Metadata	Standards	for	their	records

Expects	suppliers	to	provide	Metadata	alongside	files	(records)

CSV	was	decided	upon	as	file	format	for	metadata
XML	and	RDF	were	both	considered
Must	be	achievable	by	non-technical	staff

Often	Gov	IT	Departments	are	outsourced
Installing	even	free	applications	is	prohibitive	(cost)
Likely	familiarity	with	MS	Excel	(and	available)

Past	experience	has	shown	that	if	the	barriers	to	entry	are	too
high,	then	suppliers	will	not	comply

TNA	has	complex	metadata	requirements
Conditional	Values	and	Co-variance	Constraints
Relationships:	row	->	row,	csv	->	csv,	csv	->	files

Errors	are	introduced
Human

Transcription	mistakes
Rename	.xls	file	to	.csv

Computer
Poorly	implemented	Metadata	generation
MS	Excel	can	hide/mangle	data	e.g.	 #NAME?

Commercial	-	Suppliers	try	and	cut	corners

Version	0.1	(Internal	Only)
Command	Line	tool	developed	in	Java
Validated	metadata	across	3	types	of	CSV	files
Validation	rules	were	expressed	in	Java	DSL
Home	Guard	Collection	(Proof	of	Concept)

82,800	Records	Checked
>250,000	rows	of	CSV	data	
~4.5TB	of	JP2000	Images	validated

Still...	many	failures	detected!
However,	faster	feedback	(Pre-Ingest).
Eventually...	shared	with	digitisation	supplier

Version	0.1	was	nice...	but	in	Version	0.2	can	we	have:

Validation	rules	DSL	should
Be	External	(no	need	to	recompile)
Writable	by	Domain	Experts	not	Developers	(no	Java!)
Easily	sharable	with	suppliers

Application(s)	should	be
Freely	available	to	suppliers
Useable	in	DRI	Pre-Ingest	and	Ingest	processing

Started	at	TNA	as	text	based	DSL	for	CSV	Validation	Rules

As	interest	grew...	Requirements	exploded!

Now:
A	generic	CSV	Schema	Language
60+	Expression	for	forming	Validation	Rules
10+	High-level	data	types	(Dates,	Times,	Numbers	etc.)
Flexible	Support	for	any	tabular	text	data	(CSV,	TSV,	etc.)
Open	Standard	(Currently...	guided	by	TNA)
Freely	available	under	MPL	v2.0

https://github.com/digital-preservation/csv-schema

Simple	Plain-Text	Expression
Composable	by	non-techies	with	text	editor

Implicit	Context
Natural	to	write,	rules	are	per-column,	applied	row-by-row

Sane	Defaults
CSV	files	come	in	all	shapes,	e.g.	default	to	RFC	4180.

Streamable
CSV	files	may	be	large.	Do	not	prohibit	efficient	processing.

NOT	a	Programming	Language!
Powerful?	Yes!			For	programmers?	No!

A	CSV	Schema	consists	of:
Directives	-	modify	behaviour	of	CSV	parsing	and	rules
Rules	-	1	per	column,	composed	of	expressions

first_name,last_name,gender,dob
Adam,Retter,33,M,1981-02-04
Elisabeth,Roberts,33,F,1980-11-13

version	1.0
@totalColumns	4
first_name:	length(2,	*)
last_name:	length(2,	*)
gender:	is("M")	or	is("F")	@optional
dob:	xDate

Global	Directives	control	parsing	of	CSV

"Huxley"$"feline"$"Short	Haired	Domestic"$"10"
"Precious"$"feline"$"Short	Haired	Domestic"$"6"
"Mac"$"canine"$"Dalmatian"$"12"

version	1.0
@separator	'$'	@quoted	@totalColumns	4	@noHeader
name:	notEmpty
class:	is("feline")	or	is("canine")
breed:	length(3,	255)
age:	positiveInteger

Conditional	Expressions	and	Co-Variance

name,animal,age,short	description,notes
James,Mouse,4,,
Louise,Elephant,45,In	good	health,

version	1.0
name:	notEmpty
animal:	notEmpty
age:	if($animal/is("mouse"),	range(0,	3),	positiveInteger)
"short	description":	length(*,	255)	@optional
notes:

External	Expressions	(mainly	file	checks)

"id","fn","checksum","classifications"
"1","image1.jp2","54229abfcfa5649e7003b83dd4755294",""
"2","image2.jp3",3d0ad5a7a8ef3b1d4e6ea33e92e4d3b5,""
"3","folder1/","",""

version	1.0
id:	positiveInteger	unique
fn:	(ends(".jp2")	or	ends("/"))	and	unique
checksum:	if($fn/ends("/"),	empty,	checksum(file($fn,	"MD5")))
classifications:	regex("[0-9a-z]+(,[0-9a-z]+)*")	@optional

Validates	CSV	data	against	CSV	Schema

Reference	Implementation

Runs	on	any	JVM	v6+	(written	in	Scala	2.11)
Command	Line	Interface
GUI	Application
Scala	API
Java	API
Open	source,	available	under	MPL	v2.0

Fast	and	efficient!	Battle-tested	against	large	datasets.

https://github.com/digital-preservation/csv-validator

It's	all	open:
CSV	Schema	collaborators	would	be	nice
Developers	for	CSV	Validator
Bugfixes
New	Features

CSV	Schema
More	data	types,	specifically	numeric	types
Expressions:	any,	min,	max,	foward/backward	etc.

CSV	Validator
Multi-Threading	External	Expressions
Stream	error	messages

Review	regarding	CSV	on	the	Web	WG	products

Special	Thanks	to	The	National	Archives,	and	staff:

Special	Thanks	to	developers:

