The Design and Implementation of
FusionDB

Adam Retter
Evolved Binary
<adam@evolvedbinary.com>

Abstract

FusionDB is a new multi-model database system which was designed for the
demands of the current Big Data age. FusionDB has a strong XML herit-
age, indeed one of its models is that of a Native XML store.

Whilst at the time of writing there are several Open Source and at least
one commercial Native XML Database system available, we believe that
FusionDB offers some unique properties and its multi-model foundation for
storing heterogeneous types of data opens up new possibilities for cross-
model queries.

This paper discusses FusionDB'’s raison d’étre, issues that we had to
overcome, and details its high-level design and architecture.

1. Introduction

FusionDB, or Project Granite as it was originally known, was conceived in the
spring of 2014. Ultimately it was born out of a mix of competing emotions - frus-
tration, excitement, and ambition. The frustration came from both, the perceived
state of Open Source NXDs (Native XML databases) at that time, and commercial
pressures of operating such systems reliably at scale. The overall conclusion
being that they each had several critical issues that were not being addressed over
a prolonged period of time, and that they were rapidly being surpassed on sev-
eral fronts by their newer NoSQL document database cousins. The excitement
came from witnessing an explosion of new NoSQL database options, including
many document oriented database systems, which offered varying consistency
and performance options, with a plethora of interesting features and query lan-
guages. Whilst the ambition came from believing that the community, i.e.: the
users of NXD systems, deserved and often wanted a better option, and that if it
needed building, then we both could and, more importantly, should build it!

In 2014, we had over 10 years experience with an Open Source NXD, eXist-db,
both contributing to its development, and helping users deploy and use it at a
variety of scales. Well aware of its strengths and weaknesses in comparison to
other NXDs and non-XML database systems, we set out to identify in a more sci-
entific manner the problems faced by the stakeholders; ourselves as the develop-

179

The Design and Implementation of FusionDB

ers of the NXD, our existing users, and those users which we had not yet attracted
due to either real or perceived problems and missing features.

In the remainder of this section we set out what we believe to be the most
important issues as identified by eXist-db users and developers. Whilst we do
make comparisons between BaseX, eXist-db, MarkLogic and other NoSQL data-
bases, we place a particular focus on eXist-db as that is where our experience lies.
It should be remembered that each of these products has varying strengths and
weaknesses, and that all software has bugs. Whilst one might interpret our dis-
cussion of eXist-db issues as negative, we would rather frame it in a positive light
of transparent discussion, yes there are issues, but if we are aware of them, then
ultimately they can be fixed. There are many eXist-db users operating large sites
who are able to cope with such issues, just as there are with BaseX, MarkLogic,
and others.

1.1. Issues Identified by Users

First, through either direct reports from existing and potential users, or acting as
a proxy whilst deploying solutions for users, we identified the following issues:

1. Stability
Under normal operation the NXD could stop responding to requests. As
developers, we identified two culprits here, 1) deadlocks caused by the overlap-
ping schedules of concurrent operations requiring mutually exclusive access
to shared resources, and 2) read and write contention upon resources in the
system, whereby accessing certain resources could cause other concurrent
operations to stall for unacceptably long periods of time.

2. Corruption
When the system stopped responding to requests, it had to be forcefully
restarted. Often this revealed or led to corruption of the database. As develop-
ers, we identified both a lack of the Consistency and Durability properties of
ACID (Atomicity, Consistency, Isolation, and Durability) semantics, which
also affected the ability to recover safely from a crash (or forceful restart).

3. Vertical Scalability
Adding CPUs with more hardware threads did not cause the performance
of the database to scale as expected. As developers, we identified many bottle-
necks caused by contention upon shared resources.

4. Horizontal Scalability
There was no clustering support for sharding large data sets or splitting
resource intensive queries across multiple machines.

5. Operational Reliability
There was no support for a mirrored system with automatic failover in the
event of a hardware failure.

180

The Design and Implementation of FusionDB

6. Key/Value Metadata

There was no facility to associate additional key/value metadata with
documents in the database. Many users would store the metadata externally
to the document, either in a second "metadata document", or an external (typi-
cally) SQL database, later combining the two at query time. Unfortunately,
this lacks atomic consistency, as updates to both the metadata and documents
are not guaranteed to be in sync. As developers, we identified that a key/value
model which is atomically consistent with a document model would be
advantageous.

7. Performant Cross-reference Queries

The system supported indexes for xml:id XML identifiers and references
within and across documents. However, more complicated XML Markup Lan-
guages such as DocBook, TEI, and DITA, may use much more complex link-
ing schemes between nodes where composite key addressing information is
expressed within a single attribute. As developers, we identified that for quer-
ies spanning documents with such complex references, more advanced data
models and index structures could be used to improve performance.

1.2. Issues Identified by Developers

Both through those issues raised by users, and our experience as developers, we
identified a number of technical issues with eXist-db that we believed needed to
be solved. Each of those technical issues fell into one of three categories - Correct-
ness, Performance, and Missing Features.

It is perhaps worth explicitly stating that we have ordered these categories by
the most important first. Correctness has a higher priority than Performance, and
Performance has a higher priority than developing new features. There is little
perceived benefit to a database system which is fast, but fast at giving the wrong
results!

1.2.1. Correctness

1. Crash Recoverable
If the database crashes, whether due to a forced stop, software error, or the
host system losing power, it should always be possible to restore the database
to a previously consistent state.
A lack of correctness with respect to the implementation and interaction of
the WAL (Write Ahead Log) and Crash Recovery process needs to be
addressed.

2. Deadlock Avoidance
In a number of scenarios, locks within the database on different types of
resources are taken in different orders, this can lead to a predictable yet avoid-
able deadlock between two or more concurrent operations.

181

The Design and Implementation of FusionDB

A lack of correctness with respect to the absolute order in which locks

should be obtained and released by developers on shared resources needs to
be addressed.

Deadlock Detection and Resolution

With dynamic queries issued to the database by users on an ad-hoc basis,
it is prohibitively expensive (or even impossible) to know all of the shared
resources that will be involved and how access to them from concurrent quer-
ies should be scheduled. Deadlock Avoidance in such scenarios is impossible,
as it requires a deterministic and consistently ordered locking schedule.

With the ad-hoc locking of resources to ensure consistency between con-
current query operations, deadlocks cannot be prevented.

To ensure the correct and continual functioning of the system, deadlocks
must not cause the system to stop responding. If pessimistic concurrency with
locking is further employed, a deadlock must be detected and resolved in
some fashion which allows forward progress of the system as a whole. An
alternative improvement would be the employment of a lock-free optimistic
concurrency scheme.

Transaction Isolation

With regards to concurrent transactions, Isolation (the I in ACID) [1], is
one of the most important considerations of a database system and deeply
affects the design of that system.

Also equally important, is a clear statement to users about the available
isolation levels provided by the database. Different user applications may
require varying isolation levels, where some applications, such as social
media, may be able to tolerate inconsistencies provided by weaker isolation
levels, accounting or financial applications often require the strongest isola-
tion levels to ensure consistency between concurrent operations.

For example, BaseX provides clear documentation of how concurrent oper-
ations are scheduled [10]. It unfortunately does not explicitly state its isolation
level, but we can infer from its scheduling that it likely provides the strictest
level - Serializable. Likewise, MarkLogic dedicates an entire chapter of their
documentation [14], to the subject, a comprehensive document that unexpect-
edly does not explicitly state the isolation level, but likely causes one to infer
that Snapshot Isolation is employed; a further MarkLogic blog post appears to
confirm this [15].

The exact isolation level of eXist-db is unknown to its users and likely also
its developers. Originally eXist-db allowed dirty-reads [2], therefore providing
the weakest level of transaction isolation - Read-Uncommitted. Several past
attempts [3][5][6][7] have been made at extending the lock lease to the transac-
tion boundary, which would ensure the stronger Read-Committed or Repeatable-
Read level. Unfortunately, those past attempts were incomplete, so we can only

182

The Design and Implementation of FusionDB

infer that eXist-db provides at least Read-Uncommitted semantics, but for some
operations may offer a stronger level of isolation.

At least one ANSI (American National Standards Institute) ACID transac-
tion isolation level must be consistently supported, with a clear documented
statement of what it is and how it functions.

5. Transaction Atomicity and Consistency

A transaction must complete by either, committing or aborting. Committing
implies that all operations within the transaction were applied to the database
as though they were one unit (i.e. atomically), and then become visible to sub-
sequent transactions. Aborting implies that no operation within the transac-
tion was applied to the database, and no change surfaces to subsequent
transactions.

Unfortunately, the transaction mechanism in eXist-db is not atomic. If an
error occurs during a transaction, it will be the case that any write operation
prior to the error will have modified the database, and any write operation
subsequent to the error will not have modified the database, the write opera-
tions are not undone when the transaction aborts!

There is no guarantee that a transaction which aborts in eXist-db will leave
the database in a logically consistent state. Unless a catastrophic failure hap-
pens (e.g. hardware failure), it is still possible although unlikely, for an abor-
ted transaction to leave the database in a physically inconsistent state.
Recovery from such physically inconsistent states is attempted at restart by
the database Recovery Manager.

Transactions must be both Atomic and Consistent. It should not be left as a
surprise for users running complex queries, that if their query raises an error
and aborts, to discover that some of their documents have been modified
whilst others have not.

1.2.2. Performance

1. Reducing Contention

Alongside the shared resources of Documents and Collections that the
users of NXDs are concerned with, internally there are also many data struc-
tures that need to be safely shared between concurrent operations.

For example, concurrent access to a Database Collection in eXist-db is
effectively mutually exclusive, meaning that only a single thread, regardless
as to whether it is a reader or writer, may access it. Likewise, the same applies
to the paged storage files that eXist-db keeps on disk.

To improve vertical scaling we therefore need to increase concurrent access
to resources. The current liberal deployment of algorithms utilising coarse-
grained locking and mutual exclusion need to be replaced, either with single-

183

The Design and Implementation of FusionDB

writer/multi-reader locking, or algorithms that use a finer-grained level of
locking, or where possible, non-blocking lock-free algorithms.

2. System Maintenance

There is occasionally the need to perform maintenance tasks against the
database system, such as creating backups or reindexing documents within
the database.

Often such tasks require a consistent view of the database, and so acquire
exclusive access to many resources, which limits (or even removes) the ability
of other concurrent queries and operations to run or complete until such
maintenance tasks finish.

For example, in eXist-db there are two backup mechanisms. The first is a
best effort approach which will run concurrently with other transactions, but
does not guarantee a consistent snapshot of the database. The second will wait
for all other transactions to complete, and then will block any other transac-
tion from starting until it has completed, this provides a consistent snapshot
of the database, but at the cost of the database being unavailable whilst the
backup is created. Another example is that of re-indexing, which blocks any
other Collection operation, and therefore any other query transaction.

Such database operations should not cause the database to become
unavailable. Instead, a wversion snapshot mechanism should be developed,
whereby a snapshot that provides a point-in-time consistent view of the data-
base can be obtained cheaply. Such maintenance tasks could then be per-
formed against a suitable snapshot.

1.2.3. Missing Features

1. Multi-Model

The requirement from users for Document Metadata informs us that we
also need the ability to store key/value model data alongside our documents.

Conversely, the requirement from users for more complex linking between
documents appears to us to be well suited to a graph model. Such a graph
model, if it were available, could be used as a query index of the connections
between document nodes.

If we disregard mixed-content, then JSON's rising popularity, likely driven
by JavaScript and the creation of Web APIs [16], places it now heavily in-
demand. Many modern NoSQL document databases offer JSON (JavaScript
Object Notation) [11][12][13] document storage. Undoubtedly an additional
JSON document model would be valuable.

Neither eXist-db nor BaseX have multi-model support, although both have
some limited support for querying external relational-models via SQL (Struc-
tured Query Language), and JSON documents in XQuery [17][18]. Berkeley

184

The Design and Implementation of FusionDB

DB XML offers atomic access to both key/value and XML document models
[19]. MarkLogic offers both graph and document models natively [20].

It is desirable to support key/value, graph, and alternative document mod-
els such as JSON, to compliment our existing XML document model.

2. Clustering

With the advent of relatively cheap off-the-shelf commodity servers, and
now to a more extreme extent, Cloud Computing, when storage and query
requirements dictate it should be possible to distribute the database across a
cluster of machines.

Should any machine fail within the cluster, the entire database should still
remain available for both read and write transactions (albeit likely with
reduced performance). Should the size of the database reach the ceiling of the
storage available within the cluster, it should be possible to add more
machines to the cluster to increase the storage space available to the cluster.
Likewise, if the machines in the cluster are saturated by servicing transactions
on the database, adding further machines should enable more concurrent
transactions.

Ideally, we want to achieve a shared-nothing cluster, where both data and
queries are automatically distributed to nodes within the cluster, thus achiev-
ing a system with no single point of failure.

2. Design Decisions

Due to both our technical expertise and deep knowledge of eXist-db, and our
commercial relationships with organisations using eXist-db, rather than develop-
ing an entirely new database system from scratch, or adopting and enhancing
another Open Source database, we decided to start by forking the eXist-db code-
base.

Whilst we initially adopted the eXist-db codebase, as we progressed in the
development of FusionDB we constantly reevaluated our efforts against three
high-level objectives, in order of importance:

1. Does a particular subsystem provide the best possible solution?

2. We must replace any inherited code whether from eXist-db or elsewhere that
we cannot trust and or/verify to operate correctly.

3. We would like to maintain eXist-db API compatibility where possible.

2.1. Storage Engine

The storage engine resides at the absolute core of any database system. For disk
based databases, the task of the storage engine is to manage the low-level reading
and writing of data from persistent disk to and from memory. Reads from disk

185

The Design and Implementation of FusionDB

occur when a query needs to access pages from the in-memory buffer pool that
are not yet in memory, writes occur when pages from the in-memory buffer pool
need to be flushed to disk to ensure durability.

eXist-db has its own low level storage engine, which combines the usually
segregated responsibilities of managing in-memory and on-disk operations.
eXist-db's engine provides a B+ tree with a paged disk file format. Originally
inherited from dbXML's B+ tree implementation in 2001 [9][8], and is still recog-
nisable as such, although to improve performance and durability it has received
significant modifications, including improved in-memory page caching and sup-
port for database logging.

After an in-depth audit of the complex code forming eXist-db's BTree and
associated Cache classes which make up its storage engine, we concluded that we
could not easily reason about its correctness, a lack of unit tests in this area fur-
ther dampened confidence. In addition, due to the write-through structure of its
page cache, we identified that concurrent operations on a single B+ tree were
impossible and that exclusive locking is required for the duration of either a read
or write operation.

Without confidence in the storage engine of eXist-db, we faced a fundamental
choice:

* Write the missing unit tests for eXist-db's storage engine so that we may assert
correct behaviour, hopefully without uncovering new previously unknown
issues. Then re-engineer the storage engine to improve performance for con-
current operations, add new tests for concurrent operation, and assert that it
still passes all tests for correctness.

* Develop a new storage engine which offers performant and concurrent opera-
tion, with clean and documented code. A comprehensive test suite would also
need to be developed which proves the correctness of the storage engine
under both single-threaded and concurrent operation.

* Go shopping for a new storage engine! With the recent explosion of Open
Source NoSQL databases, it seems a reasonable assumption that we might be
able to find an existing well-tested and trusted storage engine that could be
adapted and reused.

2.1.1. Why we opted not to improve eXist-db's

As eXist-db's storage engine is predominantly based on a dated B+ tree imple-
mentation, and not well tested, we felt that investing engineering effort in
improving this would likely only yield a moderate improvement of the status
quo. Instead, we really wanted to see a giant leap in both performance and foun-
dational capabilities for building new features and services.

186

The Design and Implementation of FusionDB

Considering that within the last year at least one issue was discovered and
fixed that caused a database corruption related to how data was structured
within a B+ tree [4], it seemed likely that further issues could also surface.

Likewise, whilst the B+ tree is still fundamental and relevant for database
research, hardware has significantly advanced and now provides CPUs with mul-
tiple hardware threads, huge main memories, and faster disk IO in the form of
SSDs (Solid State Disks). Exploiting the potential performance of modern hard-
ware requires sympathetic algorithms, and recent research has delivered newer
data structures derived from B-Trees. Newer examples include the Bli"k tree [21]
which removes read locks to improve concurrent read throughput, Lock-Free B
+Tree [22] which removes locks entirely to reduce contention and improve scala-
bility under concurrent operation, Buffer Trees [24] and Fractal Trees [25] which
perform larger sequential writes to improve linear IO performance by coalescing
updates, and the Bw-Tree [23] which both eschews locks to improve concurrent
scalability and utilises log structuring to improve IO.

Given these concerns and access to newer research, we elected not to improve
eXist-db's current storage engine.

2.1.2. Why we opted not to build our own

Whilst we possess the technical ability, the amount of engineering effort in pro-
ducing a new storage engine should not be understated.

Of utmost importance, when producing a new storage engine is ensuring cor-
rectness, i.e. that one does not lose or corrupt data. Given that the storage engine
of eXist-db evolved over many years and may still have correctness issues, and
that a search quickly reveals that many other databases also had correctness
issues with their storage engines, that in some cases took years to surface and fix
[26] [27] [28] [29], we have elected not to develop a new storage engine.

In line with our organisations philosophy of both, not re-inventing a worse
wheel, and gaining from contributing to open source projects as part of a larger
community, we believe our engineering resources are best spent elsewhere by
building upon a solid and proven core, to further deliver the larger database sys-
tem features which are of interest to the end users and developers.

2.1.3. How and why we chose a 3rd-party

Having decided to use an existing storage engine to replace eXist-db's, we ini-
tially started by looking for a suitable Open Source B+ Tree (or derivative) imple-
mentation written in Java. We wanted to remain with a 100% Java ecosystem if
possible to ease integration. We had several requirements to meet:

¢ Correctness
We must be able to either explicitly verity the correctness of the storage
engine, or have a high degree of confidence in its correct behaviour.

187

The Design and Implementation of FusionDB

* Performance
The new storage engine should provide the same or better single-threaded
performance than eXist-db's B+ tree. Although we were willing to sacrifice
some single-threaded performance for improved concurrent scalability with
multi-threading.

* Scalability
As previously discussed in Section 2.1, eXist-db's B+ tree only allows one
thread to either read or write, and due to this it cannot scale under concurrent
access. The new storage engine should scale with the number of available
hardware threads.

Initially, we studied the storage engines of several other Open Source databases
written in Java that use B+ Trees, namely: Apache Derby, H2, HSQLDB, and
Neo4j. Whilst each had a comprehensive and well tested B+ Tree implementation
backed by persistent storage, there were several barriers to reuse:

* Tight Integration - each of the B+ tree implementations were tightly integrated
with the other neighbouring components of their respective database.

* No clean interface - there was no way to easily just reuse the B+ tree imple-
mentation without adopting other conventions, e.g. configuration of the host-
ing database system.

* Surface area - to reuse an existing B+ Tree would have meant a trade-off,
where we either: 1) add the entire 3rd-party database core Jar as a dependency
to our project, allowing for easy updates but also adding significant amounts
of unneeded code, or 2) we copy and paste code into our project which makes
keeping our copy of the B+ Tree code up-to-date with respect to upstream
updates or improvements a very manual and error prone task.

Succinctly put, these other database systems had likely never considered that
another project might want to reuse their core storage engine, and so were not
designed with that manner of componentisation in mind.

A second route that we considered, was looking for a very lean standalone
storage engine implemented in Java that could be reused within our database sys-
tem. We identified MapDB as a potential option, but soon discounted it due to a
large number of open issues around performance and scalability [30].

Having failed to find an existing suitable Java Open Source option for a stor-
age engine, we needed to broaden our search. We started by examining the latest
research papers on fast key/value database systems, and reasoning that databases
are often considered as infrastructure software and therefore more often than not
written in C or C++, we removed the requirement that it must be implemented in
Java. We also broadened our scope from B+ tree like storage, to instead requiring
that whatever option we identified must provide excellent performance when

188

The Design and Implementation of FusionDB

dealing with the large number of keys and values that make up our XML docu-
ments, including for both random access and ordered range scans.

From many new possibilities, we identified three potential candidates that
could serve as our storage engine. Each of the candidates that we identified were
considered to be mature products with large userbases, and stable due to being
both open source and having large successful software companies involved in
their development and deployment.

e LMDB (Lightning Memory-Mapped Database Manager)

LMDB offers a B-Tree persistent storage engine written in C. It was origi-
nally designed as the database engine for OpenLDAP.

LMDB provides full ACID semantics with Serializable transaction isolation.
Through a Copy-on-Write mechanism for the B-Tree pages and MVCC (Multi-
Version Concurrency Control), it provides read/write concurrency and claims
excellent performance; readers can't block writers, and writers can't block
readers, however only one concurrent write transaction is supported. One dis-
tinguishing aspect is that the code-base of LMDB is very small at just 6KLOC,
potentially making it easy to understand. The small codebase is achieved by
relying on the memory mapped file facilities of the underlying operating sys-
tem, although this can potentially be a disadvantage as well if multiple pro-
cesses are competing for resources.

There is no built-in support for storing heterogeneous groups of homoge-
neous keys, often known as Columns or Tables. LMDB also strongly advises
against long running transactions, such read transactions can block space rec-
lamation, whilst write transactions block any other writes. Another considera-
tion, although of less concern, is that LMDB is released under the OpenLDAP
license. This is similar to the BSD license, and arguably an open source license
in good faith, however in the stricter definition of "Open Source" the license
does not comply with the OSI's (Open Source Initiative) OSD (Open Source
Definition) [31].

e ForestDB

ForestDB offers a novel HB+-Trie (Hierarchical B+-Tree based Trie) persis-
tent storage engine written in C++11 [32]. It was designed as a replacement for
CouchBase's CouchStore storage engine. The purpose of the HB+-Trie is to
improve upon the B+Tree based CouchStore's ability to efficiently store and
query variable-length keys.

ForestDB provides ACID semantics with a choice of either Read Uncommit-
ted or Read Committed transaction isolation. Through an MVCC and append
only design, it supports both multiple readers and multiple writers, readers
can't block writers, and writers can't block readers, however because synchro-
nization between multiple writers is required it is recommended to only use a
single writer. The MVCC approach also supports database snapshots, this

189

The Design and Implementation of FusionDB

could likely be exploited to provide stronger Snapshot Isolation transactions
and online database backups.

ForestDB through its design intrinsically copes well with heterogeneous
keys, however if further grouping of homogeneous keys is required it also
supports multiple distinct KV store across the same files. Unlike LMDB, For-
estDB because of its append only design requires a compaction process to run
intermittently depending on write load, such a process has to be carefully
managed to avoid blocking write access to the database. ForestDB is available
under the Apache 2.0 license which meets the OSI's OSD, however one not
insignificant concern is that ForestDB seems to have a very small team of con-
tributors with little diversity in the organisations that are contributing or
deploying it.

* RocksDB

Initially, we identified LevelDB from Google but at that time development
appeared to have stalled, we then moved our attention to RocksDB from Face-
book which was forked from LevelDB to further enhance its performance and
feature set. Facebook's initial enhancements included multi-threaded compac-
tion to increase IO and reduce write stalls, dedicated flush threads, universal
style compaction, prefix scanning via Bloom Filters, and Merge (read-modify-
write) operators [36]. RocksDB offers an LSM-tree persistent storage engine
written in C++14. The purported advantage of the LSM tree is that writes are
always sequential, both when appending to the log and when compacting
files. Sequential writes, especially when batched, offer performance advan-
tages over the random write patterns which occur with B+Trees. The trade-off
is that reads upon an LSM tree require a level of indirection as the index of
more than one tree may need to be accessed, although Bloom filters can signif-
icantly reduce the required 1O [33] [34].

RocksDB provides only some of the ACID properties, Durability and
Atomicity (via Write Batches). Write batches act as a semi-transparent layer
above the key value storage that enable you to stage many updates in mem-
ory, reads first access the write batch and then fall-through to the key value
store, giving read-your-own-writes and therefore a primitive for building isola-
tion with at least Read Committed strength [35]. Unfortunately, the developer
has to manually build Consistency and Isolation into their application via
appropriate synchronisation!. Through MVCC and append only design, it
supports both multiple readers and multiple writers. Like ForestDB, the
MVCC approach also supports database snapshots, which likewise could be

At the time that RocksDB was adopted for FusionDB's storage engine, RocksDB offered no transac-
tional mechanisms and therefore we developed our own. RocksDB now offers both pessimistic and
optimistic transactional mechanisms

190

The Design and Implementation of FusionDB

exploited to enable a developer to provide Snapshot Isolation strength transac-
tions and online database backups.

RocksDB offers Column Families for working with heterogeneous groups of
homogeneous keys, each Column Family has its own unique configuration,
in-memory and on-disk structures, the only commonality is a shared WAL
which is used to globally sequence updates. Each Column Family may be
individually configured for specific memory and/or IO performance, which
offers the developer a great deal of flexibility in tuning the database for spe-
cific datasets and workloads. In addition, due to the global sequencing,
updates can be applied atomically across column families, allowing a devel-
oper to write complex read and update operations across heterogeneous sets
of data.

Like ForestDB, RocksDB runs a background compaction process to merge
storage files together, this could potentially lead to write stalls, although the
multi-threaded approach of RocksDB eases this, it still has to be carefully
managed. One concern is that RocksDB is available under the BSD-3 clause
license with an additional patent grant condition, this is a complex issue,
whilst the BSD license certainly meets the OSI's OSD, the patent grant is pro-
prietary and does not.%.

From the three potential candidates, each of which could technically work out
very well, we ultimately selected RocksDB.
We quickly discounted ForestDB because of three concerns:

e Its' almost sole adopter seems to be CouchBase. This appears to be confirmed
by its small GitHub community of contributors and users.

o We felt that we did not need its main advantage, of excellent performance for
variable length keys. eXist-db (ignoring extended indexes) uses seven differ-
ent key types for the data it needs to store, however within each key type, the
key length variation is usually just a few bytes.

* There was no existing Java language binding, unlike LMDB's Imdbjava and
RocksDB's RocksJava.

The choice between LMDB and RocksDB was not an easy one. Initially, we experi-
mented by replacing just eXist-db's persistent DOM store with RocksDB, we
added a layer of storage engine abstraction between eXist-db and RocksDB so
that we could more easily replace RocksDB with LMDB or another storage engine
should RocksDB not meet out requirements.

The reasons that we chose RocksDB over LMDB or any other storage engine
were not just technical. RocksDB is the result of a team of highly skilled engi-
neers, having first been built at Google and then advanced by Facebook (and oth-

2RocksDB was later relicenced by Facebook as a dual-licensed Open Source project, available under
either GPL 2.0 or Apache 2.0.

191

The Design and Implementation of FusionDB

ers), the storage engine is involved in almost every interaction that a user makes
with the Facebook websites (facebook.com, instagram.com, and messenger.com),
as of the third quarter of 2018, Facebook had 2.27 billion monthly active users.
From this, we can likely assume that RocksDB has been thoroughly battle tested
in production and at scale. Whilst LMDB is used in a handful of important infra-
structure projects such as - OpenLDAP, Postfix, Monero, libpaxos, and PowerDNS
[37], RocksDB is used by some of the largest web companies including - AirBnb,
LinkedIn, NetFlix, Uber, and Yahoo [38]. LMDB seems to be predominantly
developed by Symas Corporation, whereas RocksDB whilst led by Facebook has
a larger number of diverse contributors. RocksDB also appears to have a much
more rapid pace of development, with new features and bugfixes appearing fre-
quently, in contrast LMDB appears to have stabilised with little new develop-
ment.

Technically, RocksDB offered a much richer feature set that any other option
we evaluated, a number of which we felt would be well suited for our use case.
Many of the keys used within a key type by eXist-db are very uniform with com-
mon prefixes, this is highlighted when storing large XML documents with deeply
nested levels, as the DLN (Dynamic Level Numbering) node identifier encoding
that it employs will produce long strings with common prefixes. RocksDB offers
both Prefix Compression and a Prefix Seek API, the compression ensures that com-
mon prefixes are only stored once [39] which reduces disk space and therefore 1O,
whilst the prefix seek builds bloom filters of key prefixes to enable faster random
lookup and scan for keys with common prefixes [40]. eXist-db provides an
update facility which is similar to XQuery Update, but where the updates are
applied immediately to the data, in eXist-db these updates are not isolated to the
transaction, RocksDB provides a WriteBatchWithIndex feature, which allows you
to stage updates in-memory to the database, reading from this batch allows you
to read-your-own-writes without yet applying them to the database, we recognised
that this would allow us to provide stronger isolation for both eXist-db's XQuery
Update equivalent and its various other updating functions. There are also many
other RocksDB features that we are making use of such as atomic commit across
column families, which we would otherwise have had to build ourselves atop
another storage engine such as LMDB.

Since our initial prototyping with RocksDB in 2014 and subsequent wholesale
adoption in 2015, it has since also been adopted as the primary storage engine by
a number of other NoSQL databases with varying data models - Apache Kafka
(event stream), ArangoDB (document, graph, and key/value), CockroachDB (tab-
ular i.e. SQL), DGraph (graph), QuasarDB (time-series), SSDB (key/value), and
TiKV (key/value). RocksDB storage engines have also been developed as replace-
ments for the native storage engines of Apache Casandra (wide column store),
MongoDB (document i.e. JSON), and MySQL (tabular i.e. SQL) [38] [41].

192

The Design and Implementation of FusionDB

2.2. ACID Transactions

Having decided that FusionDB must support full ACID semantics, as well as the
technical implementation we must also have a clear statement of our transaction
isolation level. This enables developers building their applications with FusionDB
to understand how concurrent transactions on the database will interact with
each other, what constraints this places on the type of applications that FusionDB
is best suited for, or whether they need to add any additional synchronisation
within their application to support stronger isolation semantics.

Historically, there were four levels of transaction isolation, as defined by
ANSI, each of which is expressed in terms of possible phenomena dirty-read,
fuzzy-read, and phantom, that may occur when concurrent transactions operate at
that level. From weakest to strongest these are: Read Uncommitted, Read Committed,
Repeatable Read, and Serializable. Often users expect or even desire the strongest
level, Serializable, but as this can require a great deal of synchronization between
concurrent transactions, it can have a serious performance impact, and few data-
base systems offer this option, and typically even then not as the default. To work
around the dichotomy of needing to provide Serializable semantics and excellent
performance, additional transaction levels have been developed in recent years.
These are not as strong as Serializable, but exhibit less, or other, potentially
acceptable phenomena, these include - Cursor Stability, Snapshot Isolation, and Seri-
alizable Snapshot Isolation [1] [42].

Table 1. Isolation Types Characterized by Possible Anomalies Allowed

Isola- |PO PO P4C P4 Lost [P2 P3 A5A A5A

tion Dirty |Dirty |Cursor |Update Fuzzy |Phan- |Read |Write

level Write |Read |Lost Read [tom Skew |Skew
Update

Read Not Possible |Possible | Possible | Possible | Possible | Possible | Possible

Uncom-|Possible

mitted

Read Not Not Possible |Possible |Possible |Possible | Possible | Possible

Com- |Possible|Possible

mitted

Cursor |Not Not Not Some- |Some- |[Possible|Possible|Some-

Stabil- |Possible |Possible |Possible [times |[times times

ity Possible | Possible Possible

Repeat- |Not Not Not Not Not Possible [Not Not Pos-

able Possible |Possible |Possible |Possible |Possible Possible |sible

Read

193

The Design and Implementation of FusionDB

Isola- [P0 PO P4C P4 Lost [P2 P3 A5A A5A
tion Dirty |Dirty |Cursor |Update |[Fuzzy |Phan- |Read |Write
level |Write |Read |Lost Read [tom Skew |Skew
Update
Snap- |Not Not Not Not Not Some- |Not Possible
shot Possible |Possible [Possible | Possible [Possible [times |Possible
Possible

ANSI |Not Not Not Not Not Not Not Not Pos-
SQL Possible |Possible [Possible | Possible [Possible [Possible | Possible |sible
Serializ-
able
Reproduced from [1] - “Table 4. Isolation Types Characterized by Possible
Anomalies Allowed.”

As discussed in Section 1.2.1, the ACID semantics of eXist-db whilst accepta-
ble for the projects that suit it, are much weaker than we require for FusionDB.
eXist-db provides no user controllable transactions, internally it provides a Txn
object that is often required when writing to the database, however this object in
reality just manages transaction demarcation for its database log. In eXist-db,
writes are immediate, and visible to all other transactions, likewise aborting a Txn
does not cause previous statements to be rolled-back. The commit and abort
mechanisms of Txn strictly exist for the purposes of attempting to return the data-
base to a consistent state during crash recovery by replaying the database log.

e Atomicity
With eXist-db, the atomicity is provided internally though multi-reader/
single-writer locks for Documents, and exclusive locks for everything else
including Collections and B+ tree page files.

* Consistency
Unfortunately, as there are no true transactions in eXist-db, there is no real
mechanism for taking the database from one consistent state to the next.

¢ Isolation
The effective Isolation level in eXist-db is approximately Read Uncommitted.

* Durability
eXist-db does take serious strides to ensure durability. It provides both a
WAL which is fsynced to disk, and a synchronization task which periodically
flushes dirty in-memory pages to persistent disk.

Fortunately for us, RocksDB provides the Durability and Atomicity properties
of ACID. For durability, data is written to both in-memory and a WAL upon com-
mit, in-memory updates are later batched and flushed to disk. Through switching
to RocksDB for its storage engine, FusionDB also utilises RocksDB's WAL instead

194

The Design and Implementation of FusionDB

of eXist-db's, thus discarding eXist-db's previously error prone crash recovery
behaviour. This results in greater confidence of recovery from those system
crashes that are beyond the control of our software. For Atomicity, RocksDB pro-
vides Write Batches where batches of updates may be staged and then applied
atomically, in this manner all updates succeed together or fail. However, RocksDB
leaves us to build the level of Isolation and Consistency that we wish to gain our-
selves.

2.2.1. Transactions for FusionDB

Utilising a number of features provided by RocksDB we were able to build a level
of isolation for FusionDB which is at least as strong as Snapshot Isolation. Firstly,
we repurposed eXist-db's TransactionManager and associated Txn object to pro-
vide real user controllable database transactions. Secondly, due to its previous
nature, whilst the Txn object was often required for write operations in eXist-db,
it was rarely required for read operations, this meant modifying a great deal of
eXist-db's internal APIs so that a Txn is always required when reading or writing
the database.

Internally in FusionDB, when a transaction is begun, we make use of Rock-
sDB's MVCC capability and create a Snapshot of the database. These Snapshots
are cheap to create, and scale well up to hundreds of thousands, at which point
they may significantly slow-down flushes and compactions. However, we think it
unlikely that we would need to support hundreds of thousands of concurrent
transactions on a single instance. Each snapshot provides an immutable point-in-
time view of the database. A reference to the snapshot is placed into the Txn
object, and is used for every read and scan operation upon the database by that
transaction. When only considering reads, this by itself is enough to provide
Snapshot Isolation, we can then, in fact, remove all of the database read locks
that eXist-db used. As the Snapshot is immutable, we no longer need the read
locks as no concurrent transaction can modify it.

To provide the isolation for write operations, when a transaction is begun we
also create a new Write Batch and hold a reference to it in the Txn. This Write
Batch sits above the Snapshot, and in actuality all reads and writes of the transac-
tion go to the Write Batch. When the transaction writes to the database, it is
actually writing to the Write Batch. The Write Batch stages all of the writes in
order in memory, the database is not modified at this point. When the transaction
reads from the database, it actually reads from the Write Batch. The Write Batch
first attempts to answer the read for a key from any staged updates, if there is no
update staged for the key, it falls through to reading from the Snapshot. As each
transaction has its own Write Batch, which is entirely in memory, any writes
made before committing the transaction are only visible within the same transac-
tion. At commit time, the Write Batch of the (transaction) (Txn) is written atomi-

195

The Design and Implementation of FusionDB

cally to the database, or if the transaction is aborted the memory is simply
discarded, as no changes were made there are no changes to roll-back/undo.
Whether committed or aborted, when the transaction is complete we release the
database snapshot. The semantics are stronger than Read Uncommitted because no
other transaction can read another transaction's Write Batch, stronger than both
Read Committed and Repeatable Read because every read in the transaction is
repeatable due to the snapshot, but also different than Repeatable Read as it could
exhibit write skew. Like reads, for writes, we find that combining a Write Batch
with a Snapshot enables us to maintain Snapshot Isolation semantics. In FusionDB,
we could remove the Write Locks taken by eXist-db upon the database, but we
have not yet done so, the write locks are only held for short durations rather than
the duration of the transaction, however we are considering providing a configu-
ration option which would extend them to the transaction lifetime, thus yielding
Serializable isolation.

Transaction
Write Write
Read -.Batch < 0 -
a . peration

Operation e—
p _E._‘,i\\

o B = Txn

' N\ ~ \Commit

Snapshot Ry IStoragml

Figure 1. FusionDB Transaction Architecture

2.2.2. FusionDB Transactions and XQuery

At present FusionDB reuses eXist-db's XQuery engine but enforces that an
XQuery is executed as a single transaction. This means that an XQuery will either
commit all updates atomically or abort, this is in contrast to eXist-db, where there
is no atomicity for an XQuery. Consider the XQuery listed in Figure 2, when this
query is run in eXist-db if an error occurs during the update insert statement,
the /db/test.xml document will have already been inserted into the database
but will be missing its update, and so will have an incorrect balance! In FusionDB
because a transaction maintains isolation and commits or aborts atomically, if an
error occurs anywhere within the query, the document would never be inserted
into the database.

1
2 import module namespace xmldb = "http://exist-db.org/xquery/xmldb";

196

The Design and Implementation of FusionDB

3

4 let Suri := xmldb:store(

5 "/db",

6 "some-account.xml,

7 <account currency="gbp" 1d="223344"><balance>0</balance></

account>)

8 return

9 update insert <balance>9.99</data> into doc (Suri)/test
10

Figure 2. Simple Compound Update XQuery

Whilst an XQuery does execute as a single transaction, FusionDB also pro-
vides a mechanism akin to sub-transactions. Sub-transactions are exposed to the
XQuery developer naturally via XQuery try/catch expressions. The body of each
try clause is executed as a sub-transaction, i.e. an atomic unit, if any expression
within the try body raises an error, then all expressions within the try body are
atomically aborted and the catch clause is invoked, otherwise all expressions in
the try body will have been correctly executed. These sub-transactions permit the
XQuery developer a fine level of control over their query. Consider the XQuery
listed in Figure 3, with FusionDB if an error happens with any of the operations
inside try body clause, the sub-transaction is atomically aborted, and so no docu-
ments are moved, the task log file then records the failure. With eXist-db due to a
lack of atomicity, it an error occurs whilst moving one of the documents, it is
entirely possible that some documents could have already been moved even
though the query recorded the failure in the task log, thus meaning that the data-
base is no longer logically consistent.

1
2 import module namespace xmldb = "http://exist-db.org/xquery/xmldb";

3

4 let Sarchived-uris :=

5 try {

6 for S$record in collection("/db")/record[date 1t
xs:date ("2001-01-01")]

7 let Suri := document-uri (root (Srecord))

8 let $filename := replace (Suri, ".*/(.+)", "$1")

9 return
10 (
11 xmldb:move ("/db", "/db/archive", S$filename),
12 update insert
13 <entry>Archived {Suri}</entry>
14 into doc ("/db/archive-log.xml")/log
15)

197

The Design and Implementation of FusionDB

16 } catch * {

17 <archive-failure>{S$err:code}</archive-failure>
18 }

19 return

20 xmldb:store (

21 "/db",

22 "task-log-" || current-dateTime() || ".xml",
23 <task 1d="123">{Sarchived-uris}</task>)

24

Figure 3. XQuery with Try/Catch Sub-transaction

XQuery allows try/catch expressions to be nested within the try or catch
clause of another try/catch expression, likewise FusionDB supports nesting sub-
transactions within sub-transactions. By using the standard try/catch recovery
facilities of XQuery, we believe that FusionDB naturally does what the user
expects with regards to transaction boundaries.

2.2.3. FusionDB Transactions and APIs

FusionDB strives to maintain API compatibility with eXist-db, and as such
FusionDB provides the following eXist-db compatible APIs: REST, RESTXQ,
WebDAV, XML-RPC and XML:DB. Apart from the XML:DB API, none of the
other eXist-db APIs expose any mechanisms for controlling transactions, and
regardless eXist-db does not implement the XML:DB API Transaction Service.
FusionDB treats each call to any of these APIs as a distinct transaction, to main-
tain compatibility with eXist-db there are no mechanisms to establish a transac-
tion across multiple API calls. When executing XQuery via these APIs, the use of
transactions and sub-transactions as described in Section 2.2.2 apply. In future, it
is likely that FusionDB will provide new APIs to allow external applications
greater transactional control.

2.3. Concurrency and Locking

As we previously identified, eXist-db had a number of classes of concurrency
problems. We needed to study and understand each of these to ensure that they
would not also become issues for the components of eXist-db inherited by
FusionDB. As part of our company philosophy of giving back to the larger Open
Source community, we recognised that we should fix these problems at their
source. As such, we undertook a code-audit project whereby we identified and
fixed many concurrency and locking issues directly in eXist-db, we subsequently
backported these fixes to the fork of eXist-db that we use for FusionDB. This
backporting also enabled us to further increase our confidence in our changes by
showing that not only did our code pass the new tests that we had created, but

198

The Design and Implementation of FusionDB

that the modified version of eXist-db could pass the existing full-test suites of
both eXist-db and FusionDB.

The changes we made to the locking and concurrency mechanisms in eXist-db
were numerous and far-reaching. We have recently published two comprehensive
technical reports detailing the problems and the solutions that we implemented
[43] [44]. These comprehensive technical improvements have been incorporated
into both eXist-db 5.0.0 and FusionDB. Instead of reproducing those technical
reports within this paper, we will briefly highlight the improvements that were
made and their impact for FusionDB.

2.3.1. Incorrect Locking

We identified and addressed many issues in the eXist-db codebase that were the
result of incorrect locking, these included:

* Inconsistent Locking, whereby locking was applied differently to the same
types of objects at varying places throughout the codebase. We documented
the correct locking pattern, and made sure that it was applied consistently.
This gave us improved deadlock avoidance of different types of locks which
must interleave, e.g. Collection and Document locks, which are now always
acquired and released in the same order.

¢ Insufficient/Overzealous Locking, whereby in some code paths objects were
accessed either without locks or with more locking than is required for a par-
ticular operation. We modified many code paths to ensure that the correct
amount of locking is used.

e Incorrect Lock Modes, where shared reader/writer locks were used, we
repaired some cases whereby the wrong lock mode was used. For example,
where a read lock was taken but a write was performed, or vice-versa.

* Lock Leaks and Accidental Release, whereby a lock is never released, is
released too soon, or too often for reentrant locks. We introduced the concept
of Managed Locks, and deployed them throughout the codebase. Our Man-
aged Locks make use of Java's try-with-resources expression, to ensure that
they are always released, this is done automatically and in line with the
developer's expectations.

2.3.2. Lock Implementations

We identified that alongside standard Java Lock implementations, eXist-db also
made use of two proprietary lock implementations. Whilst no issues with the lock
implementations had been directly reported, we questioned the likely correctness
of them, theorising that they could be a contributor to other reported problems
with database corruption. As part of our need to understand them we were able
to research and develop an incomplete provenance for them.

199

The Design and Implementation of FusionDB

1. Collection Locks. eXist-db's own ReentrantReadWiriteLock class was used for
its Collection Locks. It was originally copied from Doug Lea's ReentrantLock,
which was itself superseded by J2SE 5.0's locks. The eXist-db version has
received several modifications which make it appear like a multi-reader/
single-writer lock, and its naming is misleading, as in actuality it is still a
mutually exclusive lock.

Document Locks. eXist-db's own MultiReadReentrantLock class was used
for its Document Locks. It was likely copied from the Apache Turbine JCS
project which is now defunct. Strangely, this is a multi-reader/single-writer
lock, which also appears to support lock upgrading. However, lock upgrading
is a well-known anti-pattern which is typically prohibited by lock implemen-
tations. The eXist-db version has received several changes which were only
simply described as “bug-fixes”.

Ultimately, we felt that the custom Lock Implementations in use by eXist-db
were of questionable pedigree and correctness. We replaced them with imple-
mentations that we believe to be both correct and reliable. We switched Docu-
ment Locks to Java's standard ReentrantReadWriteLock. Whilst for Collection
Locks we switched to MultiLock [45] from Imperial College London, which is
itself based on Java's standard locking primitives. MultiLock is a multi-state
intentioned multi-reader/single-writer lock, thus allowing for concurrent opera-
tions on Collection objects.

2.3.3. Asymmetrical Locking

Previously, the correct locking pattern in eXist-db when performing read opera-
tions on Documents within a Collection, was to lock the Collection for read
access, retrieve the Document(s) from the Collection, lock the Documents for read
access, perform the operations on the documents, release the Document locks and
then finally release the Collection locks.

We were able to optimise this pattern to reduce the duration that Collection
Locks are held for. Our asymmetrical pattern allows the Collection lock to be
released earlier, after all the Document locks have been acquired, thus reducing
contention and improving concurrent throughput.

2.3.4. Hierarchical Locking

Locks in eXist-db were previously in a flat space with one Lock per-Collection or
Document object. Unfortunately, this meant that user-submitted concurrently exe-
cuting queries could acquire locks for write access in differing orders which
would could cause a deadlock between concurrent threads. A deadlock in eXist-
db is unresolvable without restarting the system, at which point the Recovery
Manager has to attempt to bring the database back to a logically consistent state.

200

The Design and Implementation of FusionDB

We created a modified version of Gray's hierarchical locking scheme [46] for
Collection Locks, whereby the path components of eXist-db's Collection URIs
represent the hierarchy. The hand-over locking through this hierarchy that we
implemented, coupled with intention locks provided by MultiLock, permit multi-
reader/single-writer Collection access, but make it impossible to deadlock
between concurrent Collection lock operations. We also added a configuration
option (disabled by default) that allows for multi-reader/multi-writer locking of
Collections, but its use requires careful application design by the XQuery devel-
oper.

In eXist-db, we have not as yet extended the hierarchical locking scheme to
cover Documents, and so it is still possible to deadlock between Collection and
Document access, if user-submitted queries have different lock schedule ordering
for the same resources.

In FusionDB, less locking is required due to our MVCC based snapshot isola-
tion, however at present such deadlocks are still possible for write operations.
However, it is possible to resolve a deadlock by aborting a transaction in
FusionDB, leaving the database in a consistent and functioning state.

2.3.5. Concurrent Collection Caching

eXist-db made use of a global Collection Cache to reduce both object creation
overhead and disk I/O. Unfortunately, this cache was a point of contention for
concurrent operation, as accessing it required acquiring a global mutually exclu-
sive lock over the cache. For eXist-db we replaced this Collection Cache with a
concurrent data structure called Caffeine which allows fine-grained concurrent
access without explicit locking. For FusionDB, we need such global shared struc-
tures to be version aware so that they integrate with our MVCC model. We are
working on replacing this shared cache with something similar to Caffeine but
also supports MVCC.

2.3.6. New Locking Features

Alongside many technical fixes that we have made to eXist-db, we have also
added three new substantial features:

1. A centralised Lock Manager, whereby all locking actions are defined consis-
tently in a single class, and regardless of the underlying lock implementation
they present the same API.

2. A Lock Table which is fed by the Lock Manager, and allows the state of all
locks in the database system to be observed in real-time. It also provides facili-
ties for tracing and debugging lock leases, and makes its state available via
JMX for integration with 3rd-party monitoring systems.

201

The Design and Implementation of FusionDB

3. A set of annotations named EnsureLocked which can be added to methods in
the code base. These annotations form a contract which describes the locks
that should be held when the method is invoked. When these annotations are
enabled for debugging purposes, they can consult the lock table and eagerly
report on violations of the locking contracts.

Example 1. Example Use of Locking Annotations

private Collection doCopyCollection(final Txn transaction,

final DocumentTrigger documentTrigger,

@EnsureLocked (mode=LockMode.READ LOCK) final Collection
sourceCollection,

@EnsureLocked (mode=LockMode .WRITE LOCK) final Collection
destinationParentCollection,

@EnsureLocked (mode=LockMode .WRITE LOCK, type=LockType.COLLECTION)
final XmldbURI destinationCollectionUri,

final boolean copyCollectionMode,

final PreserveType preserve) {

2.4. UUIDs

In FusionDB every Collection and Document is assigned an immutable and per-
sistent UUID (Universally Unique Identifier). Each UUID is a 128-bit identifier,
adhering to the UUID Version 1 specification as defined by IETF (Internet Engi-
neering Task Force) RFC (Request For Comments) 4122. Instead of using the hosts
MAC address, instead as permitted by the UUID specification, we use a random
multicast address, which we generate and persist the first time a database host is
started. This allows us per-host identification for the UUIDs within a multi-host
system, but without leaking information about any hosts network settings.

These UUIDs allow the user to refer to a Collection or Document across sys-
tems, and retrieve it by its identifier regardless of its location with the database.
When a Collection or Document is moved within the database, its UUID remains
unchanged, whilst a copy of a Collection or Document will be allocated a new
UUID. UUIDs are also preserved across backup and restore. When restoring a
backup, the backup will notify the user of any conflicts between Collections and
Documents in the database and the backup that have the same UUID but differ-
ent database locations.

2.5. Key/Value Metadata

FusionDB offers a key/value metadata store for use with Collections and Docu-
ments. Any Collection or Document may have arbitrary metadata in the form of

202

The Design and Implementation of FusionDB

key/value pairs which are transparently stored alongside it. FusionDB also pro-
vides range indexing and search for Collections and Documents based on both
the keys and values of their associated Metadata. For example, the user can for-
mulate queries like, "Return me all of the documents which have the metadata
keys town and country, with the respective metadata values, Wiggaton and
United Kingdom. Within FusionDB updates across are atomic and consistent
across data-models, so for example, it is impossible for a Document and the Key/
Value Metadata associated with that document to be inconsistent with respect to
each other even under concurrent updates. Although not yet exposed via XQuery,
internally there are also iterator based APIs for efficiently scanning over Collec-
tions and Documents metadata.

At present our Key/Value store, is just one of the small ways in which we
expose the multi-model potential of FusionDB.

2.6. Online Backup

For backing up a FusionDB database we are able to make use of RocksDB's
MVCC facilities to create snapshots and checkpoints. We provide two mecha-
nisms for backing up the database, 1) a Full Document Export, and 2) a Check-
point Backup. The Checkpoint Backup process is both light-weight and fast, and
is the preferred backup mechanism for FusionDB. The Full Document Export
process exists only for when the user needs a dump of the database for use with
3'd party systems such as eXist-db.

2.6.1. Full Document Export

The Full Document Export mechanism will be familiar to eXist-db users as it's
very similar to the primary backup format for eXist-db, and is in fact compatible.
The export results in a directory or zip file, which contains a complete copy of
every document from the Collections that the user chose to backup. The output
directory or zip file is also structured with directories representing each sub-Col-
lection that is exported. Each directory in the output contains a metadata file
named contents .xml which contains the database metadata for the Collec-
tion and its Documents.

The metadata files have been extended from eXist-db for FusionDB to also
contain the key/value metadata (see Section 2.5) that a user may have associated
with Collection or Documents, and the UUID (see Section 2.4) of each Collection
and Document. We should also explicitly state that this Backup is transactional,
and as transactions in FusionDB are snapshots of the database, the export has the
advantage of being point-in-time consistent unlike in eXist-db. In addition, due to
removing read-locks in FusionDB thanks to our snapshot isolation, unlike eXist-
db the backup process will not block access for reads or writes to the database.

203

The Design and Implementation of FusionDB

2.6.2. Checkpoint Backup

Checkpoint backups are provided by the underlying RocksDB storage engine and
are near-instantaneous. They exploit both the MVCC and append-only nature of
the storage engine's database files. When a checkpoint is initiated, a destination
directory is created and if the destination is on the same filesystem then the files
making up the current state of the live database will be hard-linked into it, other-
wise they are copied over to it. Once the checkpoint has completed, a backup
process operates directly from the checkpoint to provide a version of the database
files that are suitable for archiving. The first part of this process is relatively sim-
ple, and really provides just the RocksDB database files holding the data for the
backup and some metadata describing the backup. The second part of the backup
process makes sure to copy any binary documents present in the database to the
backup directory as well, to do this it starts a second read-only database process
from the checkpoint, scans the binary documents in the database, making of copy
of the filesystem blob of each one. When initiating a Checkpoint Backup, the user
can choose either a full or incremental backup. As the backup process operates
from a checkpoint, it cannot block concurrent operations accessing the database.
The file format of the Checkpoint Backup is proprietary to FusionDB and should
be treated as a black-box.

2.7. BLOB Store

Similarly to our work on Locking (see Section 2.3), we recognised that there were
a number of problems with the handling of Binary Documents (i.e. non-XML
documents), that we had inherited with eXist-db. We again decided to address
these by contributing back to the wider Open Source community, as such we
developed a new BLOB (Binary Large Object) store component® for use within
eXist-db. This new BLOB Store is available in FusionDB, and a Pull Request that
we prepared will likely be merged into eXist-db in the near future.

Although we have recently reported on the technical detail of the new BLOB
Store [47], it is relevant to highlight two key points of its design:

* Lock Free. The entire Blob Store operates without any locks whatsoever,
instead it operates as an atomic state machine by exploiting CAS (Compare-
And-Swap) CPU instructions. This design decision was taken to try and
increase concurrent performance for Binary Document operations.

Deduplication. The Blob Store only stores each unique Binary Document
once. When a copy of a Document is made, a reference counter is incremen-
ted, and conversely when a copy is deleted the reference counter is decremen-

3RocksDB has recently developed an extension called BlobDB, which is still highly experimental. Like
our BLOB Store it also stores Binary Document file content in a series of files on the filesystem, but as
far as we are aware does not yet offer deduplication.

204

The Design and Implementation of FusionDB

ted. The Binary Document's content is only deleted once the reference count
reaches zero. This design decision was made to try and reduce disk IO in sys-
tems which make use of many Binary Documents.

Importantly with regards to FusionDB, the new BLOB Store was designed not
to reuse eXist-db's B+Tree storage engine, but instead persists a simple Hash
Table. In FusionDB we have also replaced the BLOB Store's persistent Hash Table
with a RocksDB Column Family, which means that updates to Binary Document
objects are also transactionally consistent.

3. High-level Architecture

In this section, we detail several of the high-level architectural aspects of
FusionDB.

3.1. Programming Language

FusionDB is written in a combination of both Java 8 and C++14 and is available
for Windows, macOS, and Linux on x86, x86_64, and PPC64LE CPUs. This came
about predominantly because eXist-db 5.0.0 is written in Java 8, whilst RocksDB
is written in C++14 and RocksJava (the RocksDB Java API) is written in Java 7.
Evolved Binary have been contributors to the RocksJava API since the adoption of
RocksDB for FusionDB's storage engine. The RocksJava API is comprehensive,
but typically lags behind the RocksDB C++ API, and so Evolved Binary have
make many Open Source contributions to add missing features and fix issues.

The RocksJava API makes heavy use of Java's JNI (Java Native Interface) ver-
sion 1.2 for calling C++ methods in RocksDB. Unfortunately when calling C++
code from Java (or vice-versa) via JNI, there is a performance penalty each time
the Java/C++ boundary is traversed. After benchmarking different call mecha-
nisms across the JNI boundary [48], we were able to improve the situation some-
what. However, when callbacks from C++ to Java involve millions of calls,
perhaps because of iterating over large datasets, the cost of the JNI boundary
accumulates quickly and has a large impact on performance. To avoid such a pen-
alty and ensure good performance, several components of FusionDB which com-
municate directly and frequently with RocksDB were rewritten in C++. These
components are then compiled directly into a custom RocksDB library that is
used by FusionDB.

205

The Design and Implementation of FusionDB

JNI

FusionDB
User APIs
Snapshot
XQuery Backup
Manager
Metadata wuIp BLOB Transaction
Store Store Store Manager
eXist-db (Highly Modified)
WriteBatch Snapshot Column Family |
/I\ RocksJava
Java 8
C++14
DOM Key
Comparator

Structural Index
Merge Operator

Metadata Index
Merge Operator

Collection Structures
Merge Operator

Metadata Index
Compaction
Operator

RocksDB

3.2. Column Families

206

Figure 4. FusionDB - Components by Language

As discussed in Section 2.1.3, RocksDB provides a feature called Column Families.
These Column Families allow you to separate the key/value pairs that make up
the database into arbitrary groupings. By storing homogeneous groups of keys
and values into distinct Column Families, we can configure each Column Family
in a manner that best reflects the format of those keys and values, and the likely
access patterns to them. Modifications across Column Families remain atomic.
When we replaced eXist-db's B+Tree based storage engine with RocksDB, we
carefully ported each distinct sub-system in eXist-db that used a B+Tree to one or
more RocksDB Column Families. We also replaced eXist-db's non-B+Tree based
Symbol Table and its indexes with a newly designed highly concurrent Symbol

The Design and Implementation of FusionDB

Table which is persisted to several Column Families. In addition the new sub-sys-
tems that we added for Key/Value Metadata (see Section 2.5) and UUID locators
(see Section 2.4) also make use of Column Families for storing data and indexes.

D = FusionDB Subsystem

Q = RocksDB Column Family

XQuery Persistent XML DOM Collection Metadata UuID
Indexes Store Key/Value Store
Store
Path N
Value [~] Metadata
Index ™~ Data
/\ ﬁ
QName Metadata]
e 11— XL Dou < Index
ata
NG
Sl syt T~
ata
/—\ ‘
Sort
Symbol
Index SIymdbol Inverted \
PN ndex Index
TN
Sort
Inverted M
Index
L N

Figure 5. Main Column Families used by FusionDB

4. Conclusion

In 2014, the inception of this project came about as a response to a number of
issues that we had identified over a period of several years from both users of
Open Source NXDs and developers. We therefore set out to build a better modern
Open Source database system which could handle XML Documents as well as
other data models.

Initially we opted to fork and modify eXist-db as the base for FusionDB. Our
plan was to firstly, fork eXist-db and replace its storage engine with RocksDB,
before undertaking further radical changes to our fork of eXist-db. Then secondly,
to build out new features, both alongside and with our fork of eXist-db. At that
time, we believed that forking the eXist-db codebase with which we were famil-
iar, would result in a faster route to delivery for FusionDB. Our initial estimate
was calculated at between six and twelve months of development time. Unfortu-
nately, this proved not to be the case, in fact quite the opposite! eXist-db has
evolved over 18 years, and as such is a feature rich and complex product. As an

207

The Design and Implementation of FusionDB

Open Source project, many developers have contributed and moved on, and there
are several areas that are undocumented, untested, and no longer well under-
stood by its current development team. Our goal, was to pass 100% of eXist-db's
test suite with FusionDB. This proved to be a tough although not insurmountable
challenge, however, achieving this revealed many bugs and incorrect tests in
eXist-db which we also had to fix (and chose to contribute back to the eXist-db
Open Source project). Whilst we have gained much by forking eXist-db, with
hindsight we believe that it would have been quicker to develop a new eXist-db
compatible system from scratch without forking eXist-db.

With FusionDB, in the first instance, we have now addressed many of the
issues identified by users and developers. RocksDB has given us much greater
stability, crash resilience, recovery, and performance. We have created an ACID
transactional database system which offers Snapshot Isolation and ensures con-
sistency and atomicity. We have invested a great deal of time and effort in to
improving the locking situation of eXist-db, which when coupled with our Snap-
shot Isolation has also reduced the number and duration of locks that we require
in FusionDB. Reduced locking has improved performance generally and
decreased contention, thus also improving vertical scalability. Likewise, it has
also prevented system maintenance tasks such as Backup or Reindexing from
blocking access to the database, as these now have their own dedicated snapshot
on which to act. Additionally we have also replaced and contributed new subsys-
tems which add Key/Value Metadata, UUID locators, and improved Binary Docu-
ment storage. This paper has both described much of the design rationale behind
these technical achievements, and revealed the architecture of their implementa-
tion.

Whilst we have not yet completed work on the issues of complex graph-like
cross-reference queries, or clustering to deliver horizontal scalability, they are
firmly on our roadmap. The construction of FusionDB has not been an easy path
to navigate, but ultimately we felt that the work was both justified and deserved
by the XML community. We believe that FusionDB has a huge amount of poten-
tial, and we are excited to both share it with the world and develop it further.

5. Future Work

A great deal of research and development work has gone into the development of
FusionDB. Some of this work, such as that around Locking and Binary Storage,
has been contributed back to eXist-db, whilst more modest improvements have
been contributed back to RocksJava.

We are approaching the stage where we believe we could release a first ver-
sion of FusionDB, however before that becomes a reality, there is still work to
complete in the short-term concerning:

208

The Design and Implementation of FusionDB

Collection Caching.

The Collection Cache of eXist-db is shared between multiple transaction
but is yet version aware. The Collection cache was originally designed to
reduce Java Object creation and memory-use by ensuring only one Object for
each distinct Collection, and reduce disk I/O by avoiding the need to fre-
quently re-read Collections from disk. To cope with transactional updates
upon cached in-memory Collection objects, the Collection Cache needs to be
either, removed entirely, or revised to be MVCC aware so that a transaction is
accessing the correct in-memory version of the on-disk Collection.

Locking and Transactions.

Whilst we have hugely improved the current state of locking in eXist-db,
for FusionDB there are many more opportunities for reducing the number of
locks whilst preserving transaction isolation and consistency. One obvious
area of work, would be looking for any advantages in replacing FusionDB's
transactions with the new facilities recently available in RocksDB for pessimis-
tic and optimistic transactions.

Performance.

Ultimately our goal is to push FusionDB to out-perform any other Docu-
ment Database. Our first performance goal is to have FusionDB out-perform
eXist-db on any operation or query. At present, FusionDB is faster than eXist-
db for many operations, but slower than eXist-db for several others. Our
changes so far to the fork of eXist-db used by FusionDB have been far-reach-
ing but somewhat conservative, we have focused on carefully reproducing
existing behaviour. We are looking forward to drastically improving perform-
ance, by exploiting the many untapped optimisations that our new technology
stack affords.

Licensing.

Our goal has always been to release FusionDB as Open Source software,
and this has not changed. However, we want to ensure that we choose an
appropriate license or licenses, that enable us to build the best possible com-
munity and software. We were previously considering a dual-licensed
approach, whereby users could choose AGPLv3 or a Commercially licensed
exemption to AGPLv3.

Recent developments in software licensing require us to properly reevalu-
ate this choice. Concrete examples of this in the database market are:

* Redis previously licensed its open source version under a BSD 3-clause,
and the modules for that under AGPLv3. Its Enterprise edition is only
available under a commercial license without source code. Around the
August 22" 2018, Redis relicenced its modules from AGPLv3 to Apache
2.0 modified with Commons Clause, changing them from Open Source to
Source Available.

209

The Design and Implementation of FusionDB

* MongoDB's database was previously licensed under AGPLv3. On October
16th 2018, MongoDB relicensed its software under a new license SSPL
(Server Side Public License) it created to solve their perceived problems
with AGPL. Whether SSPL is an Open Source or Source Available license is
still to be determined by its submission to the OSL

* Neo4j previously licensed its Community Edition under GPLv3, and its
Enterprise edition under AGPLv3. On November 15t 2018, Neo4j changed
to an Open Core model, whereby their Enterprise Edition is now only
available under a commercial license without source code.

The reason for these licensing changes have often been cited as protecting
commercial interests of Open Source companies. However it is clear that each
of these companies is taking a different route to achieve a similar outcome. We
believe that further study of the outcomes of these changes is merited, with a
focus on their acceptance or rejection by their respective previous open source
users.

In the medium term, areas of future work that are already under considera-

tion are:

Further Document Models

Of primary concern is support for natively storing JSON documents. Sev-
eral options exist for querying across XML and JSON document models,
including XQuery 3.1 Maps/Arrays and JSONiq, further work is needed to
identify the best approach for FusionDB. In addition, some research has
already been undertaken into also storing Markdown and HTML5 documents
natively, and will likely be further expanded upon.

Distributed Database

After correctness and single-node performance, we consider this to be the
most important feature of modern database that are designed to scale. Further
research into establishing a multi-node shared-nothing instance of FusionDB
is highly desirable.

Graph Database

As discussed (see Section 1.1) many users have complex cross document
query requirements that would likely benefit from more complex graph based
linking and querying. The key/value facilities of RocksDB have been previ-
ously been demonstrated by ArangoDB and DGraph as a feasible base for
building Graph database models. Integrating a graph model into FusionDB,
and the subsequent opportunities for cross-model querying is an interesting
topic for further research in FusionDB.

Bibliography
[1] Hal Berenson. Phil Bernstein. Jim Gray. Jim Melton. Elizabeth O'Neil. Patrick

O'Neil. June 1995. A Critique of ANSI SQL Isolation Levels. Association for

210

The Design and Implementation of FusionDB

Computing Machinery, Inc. http://research.microsoft.com/pubs/69541/
tr-95-51.pdf .

[2] Wolfgang Meier. eXist-db. 2006-10-13T09:35:53Z. Re: [Exist-open] Lock
(exclusive-lock, etc) does anybody have a book, tutorial, or helpful explanation?. exist-
open mailing list. https://sourceforge.net/p/exist/mailman/message/14675343/ .

[3] Wolfgang Meier. eXist-db. 2005-07-26T07:15:39Z. Initial checkin of
logging&recovery code.. GitHub. https://github.com/eXist-db/exist/commit/
led4d47f01c9ee2ede#diff-16915756b76d37e10eba8b939ale2f40R1648.

[4] Wolfgang Meier. Adam Retter. eXist-db. 2018-04-23T20:21:37+02:00. [bugfix] Fix
failing recovery for overflow DOM nodes (>4k). Addresses #1838. GitHub. https://
github.com/exist-db/exist/commit/6467898.

[5] Pierrick Brihaye. eXist-db. 2007-02-13T16:13:31Z. Made a broader use of
transaction.registerLock(). Left 2 methods with the old design (multiple collections are
involved).. GitHub. https://github.com/eXist-db/exist/commit/
cd29fef34f91d471d79966b963d1657fd9186£89.

[6] Dmitriy Shabanov. eXist-db. 2010-12-14T17:44:07Z. [bugfix] The
validateXMLResourcelnternal lock document, but do not unlock with a hope that it
will happen up somewhere. Link lock with transaction, so document lock will be

released after transaction completed or canceled.. GitHub. https://github.com/eXist-
db/exist/commit/5af077cd441039d9b8125a9149£399b9bd8ee95c.

[7] Adam Retter. eXist-db. 2018-10-31T19:12:22+08:00. [bugfix] Locks do not need to
be acquired for the transaction life-time for permission changes. GitHub. https://
github.com/eXist-db/exist/commit/
Ofaee22bc792629d625807319459a164d00691c1.

[8] eXist-db. eXist-db B+ tree. GitHub. https://github.com/eXist-db/exist/blob/
eXist-4.5.0/src/org/exist/storage/btree/BTree.java#L.26.

[9] dbXML. dbXML 1.0b4 B+Tree. SourceForge. http://sourceforge.net/projects/
dbxml-core/files/OldFiles/dbXML-Core-1.0b4.tar.gz/download.

[10] Christian Griin. BaseX. 2014-05-23T17:54:00Z. Transaction Management -
Concurrency Control. BaseX. http://docs.basex.org/index.php?
title=Transaction_Management&oldid=10646#Concurrency_Control.

[11] J. Chris Anderson, Jan Lehnardt, and Noah Slater. Apache. 2010-02-05.
CouchDB - The Definitive Guide. Storing Documents. 1st. O'Reilly. http://
guide.couchdb.org/draft/documents.html.

[12] MongoDB, Inc.. 2018-11-29. What is MongoDB?. https://www.mongodb.com/
what-is-mongodb.

211

The Design and Implementation of FusionDB

[13] Marklogic Corporation. 2018-11-29. MarkLogic Application Developers Guide.
Working with JSON. https://docs.marklogic.com/guide/app-dev/json.

[14] Marklogic Corporation. 2018-11-29. MarkLogic Application Developers Guide.
Understanding Transactions in MarkLogic Server. https://docs.marklogic.com/
guide/app-dev/transactions.

[15] David Gorbet. Marklogic Corporation. 2018-11-30. I is for Isolation, That's Good
Enough for Me! - MarkLogic. https://www.marklogic.com/blog/isolation/.

[16] Sinclair Target. Two-Bit History. 2017-09-21. The Rise and Rise of]SON. https://
twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html.

[17] Christian Griin. BaseX. 2014-11-20T14:02:00Z. SQL Module. BaseX. http://
docs.basex.org/index.php?title=SQL_Module&oldid=11101.

[18] Dan McCreary. XQuery Examples Collection Wikibook.
2011-04-14T16:42:00Z. XQuery SQL Module. Wikibooks. https://
en.wikibooks.org/wiki/XQuery/XQuery_SQL_Module.

[19] Oracle. 2015-07-10. Introduction to Berkeley DB XML. Database Features. Oracle.
https://docs.oracle.com/cd/E17276_01/html/intro_xml/dbfeatures.html.

[20] Pete Aven. Diane Burley. MarkLogic. 2017-05-11. Building on Multi-Model
Databases. How to Manage Multiple Schemas Using a Single Platform. 1st. 24-26.
O'Reilly. http://info.marklogic.com/rs/371-XVQ-609/images/building-on-multi-
model-databases.pdf.

[21] Philip Lehman. S BING YAO. 1981. Efficient Locking for Concurrent Operations
on B-Trees. ACM. ACM Transactions on Database Systems. 6. 4. 650-670.

[22] Anastasia Braginsky. Erez Petrank. Technion - Israel Institute of Technology.
2012. A Lock-Free B+tree. Proceedings of the Twenty-fourth Annual ACM
Symposium on Parallelism in Algorithms and Architectures. SPAA "'12. ACM.
58-67. 978-1-4503-1213-4. 10.1145/2312005.2312016.

[23] Justin Levandoski. David Lomet. Sudipta Sengupta. Microsoft Research.
2014-04-08. The Bw-Tree: A B-tree for new hardware platforms. IEEE. 2013 IEEE
29th International Conference on Data Engineering (ICDE). 978-1-4673-4910-9.
10.1109/ICDE.2013.6544834.

[24] Lars Arge. 1995. The Buffer Tree: A New Technique for Optimal 1/O Algorithms.
BRICS, Department of Computer Science, University of Aarhus. Lecture Notes
in Computer Science. 995. WADS 1995. Springer.

[25] Gerth Stelting Brodal. Rolf Fagerberg. 2003. Lower Bounds for External Memory
Dictionaries. BRICS, Department of Computer Science, University of Aarhus.
Society for Industrial and Applied Mathematics. Proceedings of the Fourteenth

212

The Design and Implementation of FusionDB

Annual ACM-SIAM Symposium on Discrete Algorithms. SODA "03. 546-554.
0-89871-538-5.

[26] brandur. 2017-05-07. The long road to Mongo's durability. https://brandur.org/
fragments/mongo-durability.

[27] Nassyam Basha. 2018-04-01. Database Lost write and corruption detections made
easy with dbcomp - 12.2. Oracle User Group Community. https://
community.oracle.com/docs/DOC-1023009.

[28] Robert Newson. 2017-01-19. [COUCHDB-3274] eof in couch_file can be incorrect
after error - ASF JIRA. Apache Software Foundation. https://issues.apache.org/
jira/browse/COUCHDB-3274.

[29] Jeffrey Aguilera. 2005-10-07T08:08:00Z. [DERBY-606]
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE fails on (very) large tables -

ASF JIRA. Apache Software Foundation. https://issues.apache.org/jira/browse/
DERBY-606.

[30] Issues - jankotek/mapdb. 2019-01-20. GitHub. https://github.com/jankotek/
mapdb/issues?utf8=%E2%9C%93&q=is %3 Aissue+corrupt.

[31] Ryan S. Dancey. License-discuss Mailing List. OpenLDAP license.
2001-04-09T23:22:48Z. http://lists.opensource.org/pipermail/license-
discuss_lists.opensource.org/2001-April/003156.html.

[32] Jung-Sang Ahn. Chiyoung Seo. Ravi Mayuram. Rahim Yaseen. Jin-Soo Kim.
Seung Ryoul Maeng. 2016-03-01. 2015-05-20. ForestDB: A Fast Key-Value Storage
System for Variable-Length String Keys. IEEE. Published in: IEEE Transactions on
Computers. 65. 3. 902-915. 10.1109/TC.2015.2435779.

[33] Patrick O'Neil. Edward Cheng. Dieter Gawlick. Elizabeth O'Neil. 1996. The
Log-structured Merge-tree (LSM-tree). Acta Informatica. 33. Springer-Verlag New
York, Inc.. 351-385. 10.1007/s002360050048.

[34] Ilya Grigorik. 2012-02-06. SSTable and Log Structured Storage: Level DB. https://
www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/.

[35] Siying Dong. 2015-02-27. WriteBatchWithIndex: Utility for Implementing Read-
Your-Own-Writes. https://rocksdb.org/blog/2015/02/27/write-batch-with-
index.html.

[36] Dhruba Borthakur. Facebook. 2013. The Story of RocksDB. Embedded Key-Value
Store for Flash and RAM. https://github.com/facebook/rocksdb/blob/gh-pages-
old/intro.pdf?raw=true.

[37] Symas Corporation. 2019. LMDB TECHNICAL INFORMATION. Other
Projects. https://symas.com/Imdb/technical/#projects.

213

The Design and Implementation of FusionDB

[38] Facebook. GitHub. 2019. rocksdb/USERS.md at v5.17.2 - facebook/rocksdb. Users
of RocksDB and their use cases. Other Projects. https://github.com/facebook/
rocksdb/blob/v5.17.2/USERS.md.

[39] Facebook. GitHub. 2019. rocksdb/block_builder.cc at v5.17.2 - facebook/rocksdb.
https://github.com/facebook/rocksdb/blob/v5.17.2/table/block_builder.cc#L.10.

[40] Facebook. GitHub. 2019. Prefix Seek API Changes - facebook/rocksdb Wiki. https://
github.com/facebook/rocksdb/wiki/Prefix-Seek-API-Changes.

[41] Facebook. GitHub. 2019-01-23. 2019-01-21. RocksDB - Wikipedia. Integration.
https://en.wikipedia.org/wiki/RocksDB#Integration.

[42] Dan Ports. Kevin Grittner. 2012-08. Serializable Snapshot Isolation in
PostgreSQL. VLDB Endowment. Proc. VLDB Endow.. 5. August 2012. 1850-1861.
10.14778/2367502.2367523.

[43] Adam Retter. Locking and Cache Improvements for eXist-db. 2018-02-05. https://
www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-
improvements/locking-and-cache-improvements-20180205.pdf.

[44] Adam Retter. Asymmetrical Locking for eXist-db. 2018-02-05. https://
www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/
asymmetrical-locking-20180205.pdf.

[45] Gudka Khilan. Susan Eisenbach. Fast Multi-Level Locks for Java. A Preliminary
Performance Evaluation. 2010. EC*2 2010: Workshop on Exploiting Concurrency
Efficiently and Correctly. https://www.cl.cam.ac.uk/~kg365/pubs/ec2-
fastlocks.pdf.

[46] Gudka Khilan. 1975. Granularity of Locks in a Shared Data Base. Proceedings of
the 1st International Conference on Very Large Data Bases. VLDB '75.
10.1145/1282480.1282513. 978-1-4503-3920-9. ACM. 428-451.

[47] Adam Retter. BLOB Deduplication in eXist-db. 2018-11-27. https://
blog.adamretter.org.uk/blob-deduplication/.

[48] Adam Retter. [NI Construction Benchmark. Results. 2016-01-18. https://
github.com/adamretter/jni-construction-benchmark#results.

214

