
1 eXist XQuery extension modules were counted by examining the eXist source code at https://github.com/eXist-db/exist/tree/eXist-2.2
2 MarkLogic XQuery extension modules were counted by examining the MarkLogic documentation at https://docs.marklogic.com/all

Implementation of Portable EXPath Extension
Functions

Adam Retter

Evolved Binary
<adam@evolvedbinary.com>

Abstract

Various XPDLs (XPath Derived Languages) offer many
high-level abstractions which should enable us to write
portable code for standards compliant processors.
Unfortunately the reality is that even moderately complex
applications often need to call additional functions which
are non-standard and typically implementation provided.
These implementation provided extension functions reduce
both the portability and applicability of code written using
standard XPDLs. This paper examines the relevant existing
body of work and proposes a novel approach to the
implementation of portable extension functions for XPDLs.

Keywords: XQuery, Portability, EXPath, Haxe

1. Introduction

High-level XML processing/programming languages
such as XQuery, XSLT, XProc and XForms have long
held the promise of being able to write portable code that
can execute on any W3C compliant implementation.
Unfortunately the specification of these languages leave
several issues to be "implementation defined"; Typically a
pragmatic necessity, most often occurring where the
language must interact with a lower-level interface, e.g.
performing I/O or integrating with the environment of
the host system.

If we put to one-side the potential "implementation
defined" incompatibilities, which in reality are often few
and can likely be worked around, there is another issue
which hinders the creation of portable code, and that is
the issue of implementation provided extension
functions. XQuery, XSLT, XProc and XForms are all
built atop XPath, which defines a Standard Library in the
form of the F+O specification (XPath and XQuery
Functions and Operators). XQuery 3.0 and XSLT 3.0

provide F+O 3.0 [1], and whilst XProc 1.0 and XForms
2.0 provide the older F+O 2.0 [2] it is most likely that
new versions of those specifications will also adopt F+O
3.0.

Whilst F+O 3.0 offers some 164 distinct functions
and 71 operators, it is predominantly focused on
manipulating XML, JSON and text, unfortunately for
creating complex processes or applications with XPDLs
(XPath Derived Languages) e.g XQuery, XSLT, XProc
and XForms, these functions by themselves are not
enough. To fill this gap, many implementations have
provided their own modules of extension functions to
their users; for instance eXist 2.2 provides some 53
modules 1 of extension functions for XQuery, and
similarly MarkLogic 8 provides some 55 modules 2 of
extension functions for XQuery.

The aim of this paper is that through examining the
existing approaches to portable extension functions for
XPDLs, an new approach is developed for their
implementation which should enable them to be reused
by any XPDL processor with the minimum of effort.

1.1. Extension Function Costs

Initially these extension functions are most welcome as
they enable the user to quickly and easily perform
additional operations which would be impossible (or
costly) to implement in an XPDL. Unfortunately over
time these extension functions add a burden with regards
to portability [3] [4], which typically manifests itself in
two distinct ways: directly and indirectly.

1.1.1. Directly

--- Restricting User Freedom

The use of proprietary implementation extension
functions can adversely restrict the ability of a user to
freely move between implementations or reuse their

doi:10.14337/XMLLondon15.Retter01 Page 125 of 177

1 https://github.com/wolfgangmm/exide revision 07207a2 (12 April 2015)
2 https://github.com/apb2006/graphxq revision 0b19756 (8 March 2015)
3 https://github.com/xquery/xproc.xq revision f0f0697 (13 December 2014)
4 https://github.com/robwhitby/xray revision dc03243 (25 April 2015)
5 https://github.com/eXist-db/exist/tree/develop/src/org/exist/xquery/lib/xqsuite revision c32784a (5 May 2015)

existing code across implementations. An examination of
several Open Source projects (eXide1, graphxq2,
xproc.xq3, xray4 and XQSuite5) which are implemented
in XQuery reveals that the impact of this is typically a

function of the size of the code base as illustrated in
Figure 1, and the variety of extension functions that have
been used as illustrated in Figure 2 and Figure 3.

Figure 1. External Function Calls / Lines of Code

Page 126 of 177

Implementation of Portable EXPath Extension Functions

Figure 2. Total Function Calls

Figure 3. Distinct Function Calls

Page 127 of 177

Implementation of Portable EXPath Extension Functions

1 The XQMVC projects' attempt at supporting both MarkLogic and eXist XQuery processors - https://code.google.com/p/xqmvc/source/
browse/#svn%2Fbranches%2Fdiversify%2Fsystem%2Fprocessor%2Fimpl

The most extreme example of this impact is often felt by
XQuery framework providers (e.g. XRay and xproc.xq,
xqmvc1, etc.) who often have to attempt to abstract out
various implementation extension functions to be able to
provide frameworks which will work on more than one
implementation. We therefore conclude that
implementation specific extension functions restrict
freedom by impairing code reuse.

1.1.2. Indirectly

--- Fragmenting the Community

In comparison to the C++ or Java communities, the
XPDL communities are considerably smaller. The
TIOBE Programming Community Index [5] for May
2015 shows that Java is the most popular programming
language and that C++ is third, no XPDL languages
appear in the top 100. Likewise, the PYPL Index [6] for
May 2015, shows Java and C++ to hold first and fifth
positions respectively, with no XPDL languages
appearing in the top 16. The Redmonk Programming
Language Ratings [7] for January 2015 place Java in
second and C++ in joint fifth position in terms of
popularity rank across StackOverflow and GitHub. From
the plot produced by Redmonk we can infer that in
comparison XSLT has ~57% and ~77% of the popularity
rank on GitHub and Stack Overflow respectively, whilst
XQuery has just ~14% and ~50%.

The last 10 years has produced an exponential growth
in Open Source projects; Deshpande and Riehle reported
in 2008 [8] from analysing statistics for Open Source
projects over the previous 10 years that Open Source
growth was doubling about every 14 months. With
recent social coding services such as GitHub and
BitBucket and physical events facilitated by meetup.com
and others, there is likely a much greater tendency to
publish even small snippets of code or utilities as open
source for others to reuse.

However, when publishing XPDL code projects, if
those projects depend on implementation specific
extension functions, then it is often non-trivial for a user
of a differing implementation to adapt the code. Even if
a user can adapt the code to their implementation, if they
then wish to improve it, the ability to contribute these
changes back upstream is also impaired as the code bases
have most likely diverged; As such further forking is
implied. We conclude from this that implementation
specific extension functions further fragment the XPDL
communities into smaller implementation specific sub-
communities by restricting portability and code sharing.

2. Prior Art

This paper is not the first work to look at improving the
portability of XPDLs. In this section, previous efforts in
the area of improving the portability of extension
functions within one or more XPDLs are examined.

2.1. EXSLT

The EXSLT project [9] which first appeared in March
2001, at the time focused on extension functions and
elements for XSLT 1.0. Arguably, XSLT 1.0 had a very
limited standard library provided by the core function
library of XPath 1.0 [10], with just 27 functions,
augmented with 7 additional functions. EXSLT
recognised that much of the XSLT community required
additional extension functions and elements and that it
would be desirable if such functions and elements were
the same across all XSLT implementations to ensure the
portability of XSLT code. EXSLT specified a set of 8
modules which include extension functions allowing
XSLT developers to write portable code for tasks that
were not covered by the XSLT 1.0 specification. EXSLT
itself did not provide an implementation of the
functions, rather it tightly defined the XSLT signatures
and operational expectations and constraints of its
extension functions. Any vendor may choose to
implement the EXSLT modules within their XSLT
implementation, however the standards set out by the
EXSLT project ensure that their invocation and outcome
must be the same across all implementations.

The last update to EXSLT was in October 2003, and
whilst still used by many XSLT developers its relevance
has decreased since the release of XSLT 2.0 [11] which
expanded its standard library by adopting F+O 2.0
which provides 114 functions and 71 operators, many of
which were likely inspired by EXSLT. The utility of
EXSLT will likely be further reduced by the upcoming
release of XSLT 3.0 which adopts F+O 3.0.

2.2. XSLT 1.1

XSLT 1.1 [12] of which the last public working draft was
published in August 2001 (although the first working
draft appeared in December 2000), had the stated
primary goal to “improve stylesheet portability”, and
included a new and comprehensive mechanism for
working with extension functions in XSLT.

XSLT 1.1 like XSLT 1.0 permits the use of extension
functions which are implementation defined and whose
presence is testable through the use of the fn: function-

Page 128 of 177

Implementation of Portable EXPath Extension Functions

available function. However, XSLT 1.1 went much
further than its predecessor by introducing the
xsl:script element which made possible the
implementation of an extension function within the XSL
document itself either directly in program code or by
URI reference. When two distinct programming
languages interact, there is always the issue of type
mapping, to solve this XSLT 1.1 specified explicit
DOM2 core model and argument type mappings for
ECMAScript, JavaScript and Java. Extension function
implementation was not limited to just ECMAScript,
JavaScript or Java, however bindings and mappings for
other languages were considered outside of the scope of
XSLT 1.1 and were left to be implementation defined.

Providing a user of XSLT 1.1 had used extension
functions implemented in either ECMAScript, JavaScript
or Java, and those functions were either implemented
inside an xsl:script element or available from a
resolvable URI on the Web, then it was entirely possible
to consume and/or create portable extension functions
for XSLT.

The addition of xsl:script in XSLT 1.1 was highly
controversial [13] with opponents on both sides of the
debate [14][15][16]. Unfortunately, before XSLT 1.1 was
finished, it was considered unworkable for several reasons
by the W3C XSLT Working Group [17], and was
permanently suspended to be superseded by XSLT 2.0
[11]. XSLT 2.0 adds little more than XSLT 1.0 in the
area of extension functions and altogether abandons the
type mapping from XSLT 1.1, clearly stating that: “The
details of such type conversions are outside the scope of
this specification”.

2.3. FunctX

FunctX [18] released by Priscilla Walmsley in July 2006
provides a library of over 150 useful common functions
for users of XQuery and XSLT. The purpose of this
library is to remove the need for users to each implement
their own approaches to common tasks and to provide a
code set that beginners could learn from.

FunctX provides two implementations, one in
XQuery 1.0 and the other in XSLT 2.0; neither require
any implementation specific extensions and as such are
entirely portable and useable with any W3C compliant
XQuery or XSLT processor.

The availability of FunctX has almost certainly
reduced the amount of duplicated effort that otherwise
would have been spent by developers working with
XPDLs and also removes the temptation for vendors to
provide proprietary alternatives to assist their users.

2.4. EXQuery

The EXQuery project [19] which started in October
2008 as a collaborative community effort set out with the
initial goal of raising awareness of the portability
problems that could result from the use of non-standard
vendor extensions in XQuery. Focused solely on XQuery,
the non-standard extensions which could causes issues
were set out as including extension functions, indexing
definitions, collections, full-text search and the URI
schemes used for the XPath fn:doc and fn:collection
functions.

The EXQuery project firstly approached the problem
of non-standard implementation specific extension
functions for XQuery, with the desire to define standard
function signatures and behaviour for similar XQuery
functions which appeared across several
implementations.

The EXQuery project shortly abandoned its work on
defining standard function signatures for XQuery
extension modules in favour of the EXPath project (see
Section 2.5, “EXPath”) which appeared in 2009, instead
focusing on XQuery specific portability issues like server-
side scripting resulting in RESTXQ [4].

The EXQuery project goes further than just defining
standards documents that define intention and behaviour
of a specific system, it also provides source code for a
common implementation that may be adopted as the
base for any implementation [20]; Although currently
limited to Java the project has also expressed interest in
producing C++ implementations.

2.5. EXPath

The EXPath project [21] started in January 2009 whilst
independent had many similar goals to the EXQuery
project. Critically, with regards to extension functions, it
is recognised that defining standards for these at the
lower XPath level as opposed to the XQuery or XSLT
level would make them more widely applicable to any
XPDL.

The EXPath project provides two types of
specification for XPDLs, the first looks at the broader
ecosystem of delivering XPDL applications (e.g.
Application Packaging and Web), whilst the second and
more widely adopted, focuses on defining extension
function modules. It is this second specification type of
extension function modules that are of interest to this
paper.

The EXPath project to date has released three
specifications for standard extension modules for XPDLs:
Binary Data Handling, File System API and HTTP
Client. In addition, at the time of writing there are

Page 129 of 177

Implementation of Portable EXPath Extension Functions

another five extension module specifications under
development which focus on: File Compression,
Cryptography, Geospatial and NoSQL database access.
The EXPath project like the EXSLT project focuses on
defining function signatures and behaviour, albeit at the
XPath as opposed to the XSLT level; again the goal being
that any vendor may implement an extension module
standard and that users will benefit from code portability
across all implementations that support the EXPath
specifications.

Whilst the EXPath project has predominantly
focused on defining standards documents that specify the
intention and behaviour of a number of modules of
related XPath extension functions, there have been some
related efforts [22][23][24] to produce common
implementation code for JVM (Java Virtual Machine)
based implementations.

3. Analysis

The review of prior art in Section 2, “Prior Art”, uncovers
three distinct approaches to reduce the impact of non-
portable extension functions in XPDLs:
1. Function Standardisation

Specifying function libraries and the exact
behaviour of those functions so that vendors may each
implement the same functions. EXSLT, EXQuery and
EXPath all take this approach, although EXQuery and
EXPath also have some support for reducing the
overhead of implementing (for the JVM) by
providing common code.

2. Function Distributions
Providing libraries of ready-to-use common

functions that are implemented in a language known
to every implementation. This is the approach taken
by FunctX, whose implementations are provided in
pure XQuery or XSLT.

3. Implementation Type Mapping
Tightly defining the function interface and type

mapping between the host language and the extension
function language. This is the approach taken by
XSLT 1.1, which when restricting implementation to
ECMAScript, JavaScript or Java, would have enabled
the creation and use of libraries of portable extension
functions for XSLT. Arguably XSLT 1.1 also overlaps
with the Function Distributions approach as it allows
the implementation of the extension function to be
embedded within the XSLT itself.

Function Standardisation is a great start, but without a
majority of significant implementations [25], adoption is
likely to remain a problem. Implementation can be
assisted by reducing the overhead for vendors to achieve

this, one such mechanism is providing common code;
however, this must be inclusive to languages other than
those atop the JVM (See Section 3.2, “XPDL
Implementation Survey”).

Ignoring source-level interoperability for the
moment, one issue with providing common code is that
each implementation almost certainly has a different type
system and approach to representing the XDM [26]
types (amongst others). The Implementation Type
Mapping approach taken by XSLT 1.1 demonstrates an
interesting mechanism for solving this by explicitly laying
out a type model and mappings from XSLT to the
implementation language. Both the EXQuery and
EXPath projects have also made embryonic attempts at
defining mappings for XDM types, however both are
restricted to the JVM through their use of Scala [27] and
Java [28] respectively.

Function Distributions of Standardised Functions is
the ultimate goal; The ability to distribute extension
functions for XPDLs that will interoperate with any
implementation. However, without Implementation
Type Mapping and standard interfaces it is certainly
impossible that an implementation of an XPDL
extension function would work with an unknown
vendors XPDL implementation.

Implementation Type Mapping should be considered
as the foundation layer for any form of interoperability
between an XPDL extension function and varying XPDL
implementations. Without this every implementation of
an XPDL extension function for a specific XPDL
platform would require re-implementation.

If we want to solve the problem of portable extension
functions for XPDLs then it would seem that we must
adopt a layered approach where we combine aspects of all
three existing approaches:
1. An Implementation Type mapping needs to be

created which is either at a level of abstraction that is
not specific to any particular implementation
language or can be losslessly implemented in a specific
language, yet is still specific enough to constrain
implementations to extension function standard
specifications.

Function Standardisation for extension functions
needs to take place at the XPath level so as to ensure
that the functions are applicable to the widest range of
XPDLs.

Standardised Functions need to be implemented
according to an Implementation Type Mapping to
form a Function Distribution, but in a language that
allows them to be distributed in either source or
binary form for any vendor implementation regardless
of platform.

Page 130 of 177

Implementation of Portable EXPath Extension Functions

Figure 4. Layered Approach to Portable XPDL
Extension Functions

3.1. Commonality of EXPath Standardised
Extension Functions and Implementation
Type Mapping

Whilst the EXPath project has provided definitions for
several modules of Standardised Functions for XPDL
extension functions, there has been little work by EXPath
or others [29] in reducing the duplication of effort across
vendors who wish to implement these functions, i.e. by
exploring Implementation Type Mapping.

Consider the signature of the file:exists function
(as shown in Example 1, “file:exists function signature”)
which is just one of the Standardised Functions from the
EXPath File Module [30].

Example 1. file:exists function signature

file:exists($path as xs:string) as xs:boolean

When we examine the three known implementations of
this for BaseX 8.1.1 [31], eXist 2.2 [32] and Saxon
9.6.0.5 [33] we find that each implementation is very
similar; Each implements a host interface which
represents an XPDL function, and within that
implements a host function which has access to the
arguments and context of the XPDL function call. A
simplified representation of the interfaces of these
processors is extracted:

Example 2. BaseX Extension Function Interface

interface StandardFunc {
 Item item(QueryContext qc, InputInfo ii)
 throws QueryException;
}

Example 3. eXist Extension Function Interface

interface BasicFunction {
 Sequence eval(Sequence[] args,
 Sequence contextSequence)
 throws XPathException;
}

Example 4. Saxon Extension Function Interface

interface ExtensionFunctionCall {
 SequenceIterator call(
 SequenceIterator[] arguments,
 XPathContext context) throws XPathException;
}

Whilst there is currently no non-Java implementation of
the EXPath File Module, if we examine a similarly simple
function such as XPath's fn:year-from-date in XQilla
[34] (a C++ implementation) then we can again extract a
simplified function interface:

Example 5. XQilla Function Interface

class XQFunction {
 public:
 Sequence createSequence(DynamicContext*
 context, int flags=0) const;
};

The similarity of these interfaces leads us to conclude
that there is further room for common abstraction and
that specifying a standard Implementation Type
Mapping and interfaces could lead to a reduction in
duplicated effort for implementers of these EXPath
extension functions and therefore any XPDL extension
functions.

3.2. XPDL Implementation Survey

To achieve the broadest appeal between implementers of
XPDL extension functions, it cannot be assumed that
primary support for Java, ECMAScript or JavaScript in
itself will be acceptable to the larger community; As
partially demonstrated by the failure of XSLT 1.1 (see
Section 2.2, “XSLT 1.1”). Therefore, any
Implementation Type Mapping or Function Distribution

Page 131 of 177

Implementation of Portable EXPath Extension Functions

should be applicable to any platform and most likely not
just limited to the JVM [27][28]. To inform how such a
Mapping or Distribution may be implemented, we
should first understand the variety of source languages of

existing XPDL processors. The results of a survey of
XPDL processors is presented in Table 1, “Survey of
XPDL Implementations”.

Table 1. Survey of XPDL Implementations

C C++ Haskell Java JavaScript .NET Objective-C Pascal

libxml2[a]
Berkley DBXML
(libxquery-devel)
[a][b]

Haskell
XML
Toolbox[a]

Altova Raptor
XML[a][b][c]

Frameless[a]

[c]
Exselt[a][c]

(F#) GDataXML[a] Xidel[a]

[b]

libxslt[c]
Intel SOA
Expressway
XSLT[c]

HXQ[a][b] Apache
VXQuery[b]

Saxon/
CE[c][d]

.NET
Standard
Library
XmlNode[a]

NSXML[a][b]

[c]

Saxon/
C[c][d] MarkLogic[a][b][c] BaseX[a][b] xpath

NPM[a]
XMLPrime[a]

[b][c] (C#)
Panthro[a][b]

 pugixml[a]
DataDirect
XQuery[b] XQIB[b] xsltc[c] (C#)

 QtXmlPatterns[a]

[b][c]
EMC
Documentum[a]

[b][c]

 Sedna[a][b] eXist-db[a][b][c]

 Sablotron[a][c] GNU Qexo[a][b]

[c]

 TinyXPath[a]

IBM WebSphere
Application
Server Feature
Pack for XML[a]

[b][c]

 Xalan-C++[a][c] Qizx[a][b][c]

 XQilla[a][b] Saxon[a][b][c]

 Zorba[a][b][c] Xalan-J[a][c]
[a] Implements XPath
[b] Implements XQuery
[c] Implements XSLT
[d] Source-level port of Saxon from Java

The survey was produced from aggregating the W3C
XML Query list of implementations [35], the EXPath
CG list of XPath engines [36] and relevant Google
searches. The aggregate list was then reduced to those
implementations for which information was still available
and up-to-date. The list of programming languages for
the survey was chosen based on the available

implementations, and the native language of that
implementation; For example with the Go programming
language the approach appears to be to call xsltproc [37]
(a wrapper around libxslt which itself is implemented in
C), and the common approach from Python seems to be
to use the lxml python wrapper [38] for libxml2 and
libxslt (both themselves implemented in C).

Page 132 of 177

Implementation of Portable EXPath Extension Functions

From the survey it is clear that there is no lack of
native programming language implementations of XPDL
processors. The majority of implementations are written
in Java and C++, which could likely be justified by the
size of the C++ and Java communities (as briefly
discussed in Section 1.1.2, “Indirectly”).

4. Portable XPDL Extension
Function Implementation

From an analysis of the current state of the art in regard
to extension functions for XPDLs it can be determined
that if we want to reduce the effort to implement a
standardised extension function then we need to provide
an Implementation Type Mapping; This allows the
implementer of a standardised extension function to
code to a standard interface without worrying about
vendor specifics. However, such an Implementation Type
Mapping needs to take into account the implementation
language of the vendors XPDL processor, and this could
potentially lead to an issue of fanout with many similar
Implementation Type Mappings, one for each
implementation language, which is far from ideal.

In addition, we have seen that providing common
code can help to reduce the effort which is duplicated by
each vendor implementing the same XPDL extension
functions. Unfortunately this further compounds the
fanout issue, as it would be very time consuming to
provide common implementation code for each XPDL
extension function in every known XPDL platform
implementation language.

4.1. Implementation Portability

Ideally we would like to be able to specify a single
Implementation Type Mapping and implement any
XPDL extension function just once according to that
mapping and have it execute with any vendors XPDL
implementation.

Sun Microsystems coined the phrase “Write Once,
Run Anywhere” (WORA) around 1996 in relation to
Java [39]. Java is a high-level language which avoids
platform specific implementation details by compiling to
byte-code which is then executed by a virtual machine.
The ability to distribute an XPDL extension function as
byte-code has several attractions, such as the user not
having to compile any code. However, the promise is
somewhat shallow as executing Java requires a JVM to be
installed on the target platform, without that the byte-
code cannot be executed. For those vendors whose
implementations are themselves not written in Java, they
could still execute an XPDL extension function written

in Java via JNI (Java Native Interface), however it may
not be desirable to also force their users to install a JVM
on their systems. A WORA experience for XPDL
extension functions could eliminate the fanout cost of
implementation, however Java is not suitable for all
implementations.

If we can't achieve WORA we could instead consider
falling back to a WOCA (Write Once, Compile
Anywhere) approach where we distribute the
Implementation Type Mapping and any common
implementation source code in a single language that can
be compiled on any platform. At first, C or C++ would
seem a suitable choice for WOCA due to the fact that
many XPDL processors are implemented in C or C++
and any XPDL processor implemented in Java could call
a C or C++ implementation of an XPDL extension
function via JNI. Through SWIG [40] we could also
make any C or C++ XPDL extension function applicable
to XPDL processors implemented in many other
languages. Whilst C and C++ have many desirable
properties, such as instruction set portability, compiler
availability, and interoperability, the code is often highly
hardware (e.g. big-endian vs little-endian), Operating
System specific (e.g. Win32 API vs Posix API) and
library specific (e.g Std vs Boost vs Qt etc), thus
imposing a great deal of constraints to actually achieve
WOCA; Therefore we would most likely still require
several C or C++ variants for different systems.

Having identified issues with both, WORA where we
would distribute a compiled intermediate byte-code for a
VM (Virtual Machine), and WOCA where we would
distribute source code which could be compiled to
machine code, we are naturally led to investigate Source-
to-source compilation. Source-to-source compilation
allows us to take source code expressed in one language
and translate it into a different target language.
Regardless of the language of our initial source code,
based on the results of our survey (see Table 1, “Survey of
XPDL Implementations”) we know that we would need
to generate code for at least C++ and Java targets.

An examination of the available source-to-source
compilers leads us to the Haxe Cross-platform Toolkit
which fits our requirements well as it has targets for C++,
C#, Java and JavaScript amongst others [41], with targets
in development for C and LLVM [42]. Haxe uses a single
source language also called Haxe which is similar to
ECMAScript but with influences from ActionScript and
C#. The Haxe toolkit also provides a cross-target
standard library for the Haxe language. With Haxe it
seems entirely possible that we can entirely eliminate the
fanout issue of implementation by: 1) specifying an
Implementation Type Mapping between XDM and the
Haxe Language and 2) going further than providing

Page 133 of 177

Implementation of Portable EXPath Extension Functions

common code for the implementation of an XPDL
extension function, instead implement the entire
function according to the Implementation Type
Mapping in the Haxe language itself. The vendor of an
XPDL processor could then take the Haxe code and
compile it to the implementation language of their
processor to produce a distribution of standardised
extension functions; This role could also perhaps also be
taken by an intermediary such as the EXPath project.

4.2. Implementation Type Mapping for Haxe

We have developed a partial Implementation Type
Mapping between XDM and Haxe (the source code is
available from the EXQuery GitHub repository [43])
that provides enough functionality to allow
implementation of a single EXPath extension function:
the file:exists function (as discussed in Section 3.1,
“Commonality of EXPath Standardised Extension
Functions and Implementation Type Mapping”). In
addition to implementing Type Mappings for the XDM,
we also need to implement interfaces to map the XPath
concept of calling a function and passing arguments.

To produce interfaces for mapping the concept of an
XPDL extension function, which is effectively an
externally declared function in terms of the XPath
specification, we need to understand both how a
function is declared and subsequently called. A function
call in XPath 3.0 [44]is made up of the several constructs
expressed in EBNF (Extended Backus-Naur Form) as
reproduced in Example 6, “XPath 3.0 Function Call
EBNF”.

Example 6. XPath 3.0 Function Call EBNF

FunctionCall ::= EQName ArgumentList
ArgumentList ::= "(" (Argument ("," Argument)*)? ")"

XPath only specifies how to call a function, it does not
specify how to define a function, so here we have opted
to follow the XQuery 3.0 specification which does
specify how to define a function [45]. A function
definition in XQuery 3.0 is made up of the EBNF
constructs as reproduced in Example 7, “XQuery 3.0
Function Declaration EBNF”.

Example 7. XQuery 3.0 Function Declaration EBNF

FunctionDecl ::= "function" EQName "(" ParamList? ")"
 ("as" SequenceType)? (FunctionBody | "external")
ParamList ::= Param ("," Param)*
Param ::= "$" EQName TypeDeclaration?
FunctionBody ::= EnclosedExpr

TypeDeclaration ::= "as" SequenceType
SequenceType ::= ("empty-sequence" "(" ")") | (ItemType OccurrenceIndicator?)
OccurrenceIndicator ::= "?" | "*" | "+"

EQName ::= QName | URIQualifiedName

As our XPDL extension functions will always be external
in nature, we can transform the FunctionDecl construct,
to extract a FunctionSignature. As our functions are
always external we can also ignore the FunctionBody
construct as this will instead be implemented in Haxe
code. As our extension functions are always the target of
a function call, we can reduce EQName to QName. All of the
other constructs can be translated into interfaces for our
Implementation Type Mapping to the Haxe language.

Page 134 of 177

Implementation of Portable EXPath Extension Functions

Example 8. Function Type Mapping for Haxe

package xpdl.extension.xpath;

interface Function {
 public function signature() : FunctionSignature;
 public function eval(
 arguments: Array<Argument>,
 context: Context) : Sequence;
}

class FunctionSignature {
 var name: QName;
 var returnType: SequenceType;
 var paramLists: Array<Array<Param>>;

 public function new(name, returnType, paramLists)
 {
 this.name = name;
 this.returnType = returnType;
 this.paramLists = paramLists;
 }
}

Example 8, “Function Type Mapping for Haxe” shows
part of our Implementation Type Mapping for functions
(full code in Appendix A, Function Type Mapping in
Haxe). The mapping is direct enough that anyone with a
knowledge of the relevant EBNF constructs of XPath and
XQuery can understand the simplicity of the function
type mapping between an XPDL extension function and
Haxe.

Yet, being able to specify the interface for a function
is not enough; we also need to create Implementation
Type Mappings for the XDM types. Whilst ultimately
we need to map all XDM types, within this paper we
focus exclusively on the types required for our partial
implementation, i.e. those types needed by the function
signature of the file:exists function (see Example 1,
“file:exists function signature”).

The signature of file:exists shows how we only
need to create type mappings for xs:string and
xs:boolean to appropriate Haxe types. We take the
approach to encapsulate the Haxe types inside
representations of the XDM types, as we believe that this
will provide greater flexibility for future changes.

Example 9. Haxe Implementation Type Mapping for
xs:string and xs:boolean

package xpdl.xdm;

import xpdl.HaxeTypes.HString;

interface Item {
 public function stringValue() : xpdl.xdm.String;
}

interface AnyType {
}

interface AnyAtomicType extends Item extends AnyType
{
}

class Boolean implements AnyAtomicType {
 var value: Bool;

 public function new(value) {
 this.value = value;
 }

 public function stringValue() {
 return new xpdl.xdm.String(Std.string(value));
 }

 public function haxe() {
 return value;
 }
}

class String implements AnyAtomicType {
 var value: HString;

 public function new(value) {
 this.value = value;
 }

 public function stringValue() {
 return this;
 }

 public function haxe() {
 return value;
 }
}

There is certainly an argument concerning whether we
should actually implement the xs:string and xs:boolean
XDM types in Haxe by providing classes, or whether we
should simply provide interfaces for a vendor to
implement. Further research through a survey of vendor
requirements would be required to answer this
definitively. For the purposes of this paper, classes have
been implemented for these basic atomic types.

Page 135 of 177

Implementation of Portable EXPath Extension Functions

4.3. Implementation of a portable file:exists

Given the function type mapping and Implementation
Type Mapping that we have defined in Section 4.2,
“Implementation Type Mapping for Haxe” we can now
implement our first truly portable XPDL extension
function by making use of Haxe.

Example 10. Implementation of the file:exists

function in Haxe

class ExistsFunction implements Function {
 private static var sig = new FunctionSignature(
 new QName(
 "exists",
 "http://expath.org/ns/file",
 "file"),

 new SequenceType(
 Some(new ItemOccurrence(Boolean))),
 [
 [new Param(new QName("path"),
 new SequenceType(Some(
 new ItemOccurrence(
 xpdl.xdm.Item.String))))
]
]
);

 public function new() {}

 public function signature() {
 return sig;
 }

 public function eval(
 arguments : Array<Argument>,
 context: Context)
 {
 var path = arguments[0].getArgument().
 iterator().next().
 stringValue().haxe();
 var exists = FileSystem.exists(path);
 return new ArraySequence([
 new Boolean(exists)]);
 }
}

Example 10, “Implementation of the file:exists

function in Haxe” shows the main concern of our
implementation of file:exists (full code in Appendix B,
file:exists implementation in Haxe).

4.4. XPDL Processor Vendor Implementation

We have defined both an Implementation Type Mapping
for XDM and associated interfaces for functions in the
Haxe language, and subsequently created an

implementation of an XPDL Extension Function, the
EXPath File Module's file:exists function in Haxe
written for the type mapping and interfaces. However,
such an XPDL extension function implementation is still
not useful without vendor support, as the Haxe code
must be compiled to the XPDL processors
implementation language and made available to the
XPDL from the processor.

As a proof-of-concept we have compiled the Haxe
code to both Java source and byte code using the Haxe
compiler and modified eXist-db to support XPDL
Extension Functions (the source code is available from
the eXist GitHub repository [46]). Modifying eXist to
recognise any XPDL Extension Function Module and
make its functions available as extension functions in
XQuery was achieved in approximately 300 lines of Java
code; For the partial implementation, only support for
the XDM types xs:string and xs:boolean was required,
but we recognise that the amount of code required will
increase as further XDM types are mapped.

Whilst modifying eXist to support XPDL Extension
Function Modules, we recognised that there were several
different approaches that could be taken to implement a
mapping between eXists own XDM model and our Haxe
XDM model. These approaches, whilst not exhaustive,
will most likely also apply to other XPDL processors, and
so we briefly enumerate them here for reference:
1. Mapping of Haxe XDM types to eXist XDM types

and vice-versa. This could be achieved either statically
or dynamically, or through a combination of both
approaches. A static implementation would be coded
in source, whereas a dynamic mapping would be
generated as needed at runtime.

2. Modify eXists XDM classes to implement the Haxe
XDM interfaces. This would allow us a single XDM
model and we could transparently pass eXists XDM
types into the Haxe compiled functions.

3. Inversion of Responsibility, using byte-code
generation at runtime to have the Haxe XDM
interfaces implement the eXist XDM interfaces. This
would make the Haxe XDM model compatible with
the eXist XDM model, so that Haxe XDM types
could be used transparently by eXist.

For expediency in creating the proof-of-concept
modifications in eXist, we used a static mapping of
XDM types in combination with a dynamic mapping of
functions. For the dynamic mapping of functions we
used byte-code generation to generate classes at runtime
to bridge between eXist's concept of an extension
function and our Haxe XPDL extension function.

Page 136 of 177

Implementation of Portable EXPath Extension Functions

5. Summary and Conclusion

Having explicitly laid out the issues with portability of
XPDLs in regard to non-standard extension functions
(see Section 1, “Introduction”), we have reviewed both
the past and current works on improving the status-quo
(see Section 2, “Prior Art”), and performed a critical
analysis of these approaches (see Section 3, “Analysis”).
From our critical analysis we have identified three
common approaches to improving portability: Function
Standardisation, Function Distributions and
Implementation Type Mappings. To resolve the issue of
portability with respect to extension functions for XPDL
users, we argue that there have to be solutions in place
for all three approaches and that these must work
together holistically.

Function Standardisation is already well supported by
the EXPath project, a community oriented organisation
which is vendor agnostic and has already proven itself
capable of coordinating stakeholders to define modules
of common XPDL extension functions and their
behaviour.

Function Distributions require implementations of
extension functions which they can then make available.
These extension functions themselves however need to be
portable, so that the resultant XPDL code that uses them
is also portable. Arguably the FunctX distribution was
successful because its extension functions were portable,
as they were written in XSLT and XQuery, making them
useable on any vendors XQuery or XSLT processor. For
more complex extension functions which cannot be
expressed in an XPDL, a portable Implementation Type
Mapping is a required enabler to creating Function
Distributions.

We have presented a solution for a portable
Implementation Type Mapping through the use of
source-to-source compilation (section Section 4.2,
“Implementation Type Mapping for Haxe”), and
implemented what we believe to be the first truly portal
extension function for an XPDL whilst using a non-
XPDL to implement the function (section Section 4.3,
“Implementation of a portable file:exists”). Further,
we have created a proof-of-concept by integrated support
for the Implementation Type Mapping into a real-world
XPDL processor (section Section 4.4, “XPDL Processor
Vendor Implementation”).

The use of Haxe for source-to-source compilation is
an interesting and novel approach towards solving the

issue of portable extension functions for XPDLs. Whilst
it does not eliminate the need of some effort by XPDL
processor vendors to support it, it greatly reduces the
work to a one-off exercise to support a portable
Implementation Type Mapping. In this manner an
XPDL extension function written once in Haxe, when
compiled will work on any XPDL processor (in a target
language supported by Haxe) which implements the
Implementation Type Mapping. For authors of portable
XPDL extension functions, rather than just creating a
standardisation of a function module through the
EXPath project and waiting for each vendor to
implement this, they can now also write a single
implementation which can be adopted quickly by the
widest possible audience.

5.1. Future Work

The Implementation Type Mapping and the proof-of-
concept currently only implement the basic XDM types
required for this paper, a full XDM Implementation
Type Mapping in Haxe is desirable and would likely
provide new insights into creating a portable
Implementation Type Mapping.

The target code generated by the Haxe compiler can
be somewhat verbose and even confusing to the
consuming developer. It is possible to tune the code
generation by tightly controlling DCE (Dead Code
Elimination) and native vs reflective generation. The use
of various Haxe language annotations should be
investigated to achieve the generation of cleaner target
code.

The options for implementation approach discussed
in Section 4.4, “XPDL Processor Vendor
Implementation” are likely coupled to the observation at
the end of Section 4.3, “Implementation of a portable
file:exists” over how concrete the XDM
Implementation Type Mapping should be. Further
research is required in this area, likely informed by
creating more proof-of-concept integrations with several
other XPDL processors.

Whilst Haxe does not favour Java as a target above
any other, a non-Java proof-of-concept would reinforce
our argument that Haxe allows us to create a portable
implementation. A C++ integration for the Zorba
XQuery processor could perhaps serve as a suitable
reinforcement.

Page 137 of 177

Implementation of Portable EXPath Extension Functions

A. Function Type Mapping in Haxe

package xpdl.extension.xpath;

interface Function {
 public function signature() : FunctionSignature;
 public function eval(arguments: Array<Argument>, context: Context) : Sequence;
}

interface Context {
}

class FunctionSignature {
 var name: QName;
 var returnType: SequenceType;
 var paramLists: Array<Array<Param>>;

 public function new(name, returnType, paramLists) {
 this.name = name;
 this.returnType = returnType;
 this.paramLists = paramLists;
 }
}

class QName {
 public static var NULL_NS_URI = "";
 public static var DEFAULT_NS_PREFIX = "";

 var localPart : String;
 var namespaceUri(default, null) : String;
 var prefix(default, null) : String;

 public function new(localPart, ?namespaceUri, ?prefix) {
 this.localPart = localPart;
 this.namespaceUri = (namespaceUri == null) ? NULL_NS_URI : namespaceUri;
 this.prefix = (prefix == null) ? DEFAULT_NS_PREFIX : prefix;
 }
}

class SequenceType {
 var type: Option<ItemOccurrence>; //None indicates empty-sequence()

 public function new(type) {
 this.type = type;
 }
}

class ItemOccurrence {
 var itemType: Class<Item>;
 var occurrenceIndicator: OccurrenceIndicator;

 public function new(itemType, ?occurenceIndicator) {
 this.itemType = itemType;
 this.occurrenceIndicator = (occurrenceIndicator == null) ?
 OccurrenceIndicator.ONE : occurrenceIndicator;
 }
}

enum OccurrenceIndicator {
 ZERO_OR_ONE; // ?

Page 138 of 177

Implementation of Portable EXPath Extension Functions

 ONE; // implementation detail
 ONE_OR_MORE; // +
 ZERO_OR_MORE; // *
}

class Param {
 var name: QName;
 var type: SequenceType;

 public function new(name, type) {
 this.name = name;
 this.type = type;
 }
}

interface Argument {
 public function getArgument() : Sequence;
}

interface Module {
 public function name() : String;
 public function description() : String;
 public function functions() : List<Class<Function>>;
}

B. file:exists implementation in Haxe

package example.expath.file;

import xpdl.extension.Module;
import xpdl.extension.xpath.*;
import xpdl.extension.xpath.SequenceType.ItemOccurrence;
import xpdl.xdm.Sequence;
import xpdl.xdm.Item.Item;
import xpdl.xdm.Item.Boolean;
import sys.FileSystem;

class ExistsFunction implements Function {

 private static var sig = new FunctionSignature(
 new QName("exists", FileModule.NAMESPACE, FileModule.PREFIX),
 new SequenceType(Some(new ItemOccurrence(Boolean))),
 [
 [new Param(new QName("path"), new SequenceType(Some(new ItemOccurrence(xpdl.xdm.Item.String))))]
]
);

 public function new() {}

 public function signature() {
 return sig;
 }

 public function eval(arguments : Array<Argument>, context: Context) {
 var path = arguments[0].getArgument().iterator().next().stringValue().haxe();
 var exists = FileSystem.exists(path);
 return new ArraySequence([new Boolean(exists)]);
 }
}

Page 139 of 177

Implementation of Portable EXPath Extension Functions

class ArraySequence implements Sequence {
 var items: Array<Item>;

 public function new(items: Array<Item>) {
 this.items = items;
 }

 public function iterator() {
 return new ArraySequenceIterator(items.iterator());
 }
}

class ArraySequenceIterator implements xpdl.support.Iterator<Item> {
 var it: Iterator<Item>;

 public function new(it) {
 this.it = it;
 }

 public function hasNext() {
 return it.hasNext();
 }

 public function next() {
 return it.next();
 }
}

class FileModule implements Module {
 @final public static var NAMESPACE = "http://expath.org/ns/file";
 @final public static var PREFIX = "file";

 public function name() {
 return "FileModule.hx";
 }

 public function description() {
 return "Haxe implementation of the EXPath File Module";
 }

 public function functions() : List<Class<Function>> {
 var lst = new List<Class<Function>>();
 lst.add(ExistsFunction);
 return lst;
 }
}

Bibliography

[1] XPath and XQuery Functions and Operators 3.0. W3C. 8 April 2014.
http://www.w3.org/TR/xpath-functions-30/

[2] XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition). W3C. 14 December 2010.
http://www.w3.org/TR/xpath-functions/

[3] Unifying XSLT Extensions. xml.com. Leigh Dodds. 29 March 2000.
http://www.xml.com/pub/a/2000/03/29/deviant/index.html

Page 140 of 177

Implementation of Portable EXPath Extension Functions

[4] RESTful XQuery. Standardised XQuery 3.0 Annotations for REST. XML Prague. . XML Prague. Adam Retter.
12 February 2012.
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf

[5] TIOBE Programming Community Index. TIOBE Software. May 2015.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[6] PYPL PopularitY of Programming Language Index. Pierre Carbonnelle. May 2015.
http://pypl.github.io/PYPL.html

[7] Redmonk Programming Language Ratings. RedMonk. January 2015.
https://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/

[8] The Total Growth of Open Source. Amit Deshpande and Dirk Riehle. SAP Research, SAP Labs LLC. The Fourth
Conference on Open Source Systems (OSS 2008). . Springer Verlag. 197-209. 2008.

[9] The EXSLT Project.
http://www.exslt.org

[10] XML Path Language (XPath) Version 1.0. W3C. 16 November 1999.
http://www.w3.org/TR/xpath/

[11] XSL Transformations (XSLT) Version 2.0. W3C. 23 January 2007.
http://www.w3.org/TR/xslt20/

[12] XSL Transformations (XSLT) Version 1.1. W3C. 24 August 2001.
http://www.w3.org/TR/xslt11/

[13] XSLT Extensions Revisited. xml.com. Leigh Dodds. 14 February 2001.
http://www.xml.com/pub/a/2001/02/14/deviant.html

[14] Re: [xsl] XSLT 1.1 comments. W3C xsl-editors Mailing List. Michael Kay. 11 February 2001.
https://lists.w3.org/Archives/Public/xsl-editors/2001JanMar/0087.html

[15] Re: [xsl] XSLT 1.1 comments. xsl-list Mailing List. Steve Muench. 12 February 2001.
http://markmail.org/message/5fpk5gecmslzepdy

[16] Petition to withdraw xsl:script from XSLT 1.1. xml-dev Mailing List. Uche Ogbuji. 1 March 2001.
http://markmail.org/thread/tquj4ozsax3pjkm2

[17] Minutes of the Face-to-face meeting of the W3C XQuery Working Group in Bangkok. W3C XQuery Working
Group. January 2001.
https://lists.w3.org/Archives/Member/w3c-xsl-wg/2001Feb/0083.html

[18] FunctX. Datypic. Priscilla Walmsley. July 2006.
http://www.functx.com

[19] EXQuery. Collaboratively Defining Open Standards for Portable XQuery Applications. EXQuery. October
2008.
http://www.exquery.org

[20] EXQuery Common Implementation Source Code. The EXQuery Project.
https://github.com/exquery/exquery

[21] EXPath. Collaboratively Defining Open Standards for Portable XPath Extensions. EXPath. January 2009.
http://www.expath.org

[22] EXPath HTTP Client Module Common Implementation Source Code. Florent Georges.
https://github.com/fgeorges/expath-http-client-java

[23] EXPath File Module Common Implementation Source Code. The EXQuery Project. Adam Retter.
https://github.com/exquery/exquery/tree/master/expath-file-module

[24] EXPath File Module Common Implementation Source Code. Florent Georges.
https://github.com/fgeorges/expath-file-java

[25] Implementations of EXPath Modules. W3C EXPath Community Group. 8 May 2015.
https://www.w3.org/community/expath/wiki/Modules#Implementation

Page 141 of 177

Implementation of Portable EXPath Extension Functions

[26] XQuery and XPath Data Model 3.0. W3C. 8 April 2014.
http://www.w3.org/TR/xpath-datamodel-30/

[27] API for XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition). The EXQuery Project. Adam Retter.
12 February 2015.
https://github.com/exquery/exquery/tree/xdm-model/xdm

[28] XML Model for Java. The EXPath Project. Florent Georges. 6 January 2015.
https://github.com/expath/tools-java

[29] Minutes of Face-to-face meeting of the W3C EXPath Community Group in Prague. W3C EXPath Community
Group. 12 February 2015.
https://lists.w3.org/Archives/Public/public-expath/2015Feb/0005.html

[30] File Module 1.0. W3C EXPath Community Group. 20 February 2015.
http://expath.org/spec/file

[31] BaseX 8.1.1 implementation of EXPath file:exists function. BaseX. 9 January 2015.
https://github.com/BaseXdb/basex/blob/8.1.1/basex-core/src/main/java/org/basex/query/func/file/
FileExists.java

[32] eXist implementation of EXPath file:exists function. Adam Retter. 21 February 2015.
https://github.com/adamretter/exist-expath-file-module/blob/master/src/main/scala/org/exist/expath/module/
file/FileModule.scala

[33] Saxon implementation of EXPath file:exists function. Florent Georges. 16 January 2015.
https://github.com/fgeorges/expath-file-java/blob/master/file-saxon/src/org/expath/file/saxon/props/Exists.java

[34] XQilla implementation of XPath fn:date-from-year function. XQilla. 16 November 2011.
http://xqilla.hg.sourceforge.net/hgweb/xqilla/xqilla/file/6468e5681607/include/xqilla/functions/
FunctionYearFromDate.hpp

[35] W3C XML Query. Implementations. W3C XQuery Working Group.
http://www.w3.org/XML/Query/#implementation

[36] W3C EXPath Community Group Wiki. XPath Engines. W3C EXPath Community Group. 8 May 2015.
https://www.w3.org/community/expath/wiki/Engine

[37] Using XSLT with Go. William Kennedy. 3 November 2013.
http://www.goinggo.net/2013/11/using-xslt-with-go.html

[38] lxml. XML Toolkit for Python.
http://lxml.de/

[39] Write once, run anywhere. Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Write_once,_run_anywhere

[40] SWIG. Simplified Wrapper and Interface Generator.
http://www.swig.org/

[41] Haxe Compiler Targets.
http://haxe.org/documentation/introduction/compiler-targets.html

[42] Experimental C and LLVM Targets for Haxe.
https://github.com/waneck/haxe-genc

[43] Source code for Implementation Type Mapping of XPDL Extension Functions in Haxe. The EXQuery Project.
Adam Retter. 12 May 2015.
https://github.com/exquery/xpdl-extension-lib

[44] XML Path Language (XPath) 3.0. Static Function Calls. W3C. 8 April 2014.
http://www.w3.org/TR/xpath-30/#id-function-call

[45] XQuery 3.0: An XML Query Language. Function Declaration. W3C. 8 April 2014.
http://www.w3.org/TR/xquery-30/#FunctionDecln

[46] Source code of XPDL Extension Functions integration with eXist. Adam Retter. 12 May 2015.
https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl

Page 142 of 177

Implementation of Portable EXPath Extension Functions

